Advertisement

Zika Virus Envelope Protein and Antibody Complexes

Chapter
Part of the Subcellular Biochemistry book series (SCBI, volume 88)

Abstract

Zika virus (ZIKV) is a re-emerged human pathogen, belonging to a super serogroup with dengue virus. Infection of ZIKV can lead to severe congenital symptoms, such as microcephaly, in newborns and Guillain-Barré syndrome in adults. To date, no prophylactics and therapeutics are available. Flavivirus envelope (E) protein represents the major target for neutralizing antibodies, while antibody response is the key correlate of protection against ZIKV infection. A panel of monoclonal antibodies (MAbs) were found to neutralize ZIKV infection and some of them exhibited strong potential as antivirals. In this chapter, we provide a brief introduction into the history and epidemics of ZIKV. Subsequently, we describe the ZIKV envelope protein and summarize the recent progresses in MAbs development against this virus. The concomitant molecular basis for these protective MAbs is also dissected. This chapter helps to comprehensively understand the interplay between ZIKV E protein and protective MAbs.

Keywords

Zika virus (ZIKV) Flavivirus Monoclonal antibody (MAb) Neutralization Envelope protein Antibody epitopes 

References

  1. Avirutnan P, Fuchs A, Hauhart RE, Somnuke P, Youn S, Diamond MS, Atkinson JP (2010) Antagonism of the complement component C4 by flavivirus nonstructural protein NS1. J Exp Med 207(4):793–806.  https://doi.org/10.1084/jem.20092545 CrossRefPubMedPubMedCentralGoogle Scholar
  2. Barba-Spaeth G, Dejnirattisai W, Rouvinski A, Vaney MC, Medits I, Sharma A, Simon-Loriere E, Sakuntabhai A, Cao-Lormeau VM, Haouz A, England P, Stiasny K, Mongkolsapaya J, Heinz FX, Screaton GR, Rey FA (2016) Structural basis of potent Zika-dengue virus antibody cross-neutralization. Nature 536(7614):48–53.  https://doi.org/10.1038/nature18938 CrossRefPubMedGoogle Scholar
  3. Baud D, Gubler DJ, Schaub B, Lanteri MC, Musso D (2017) An update on Zika virus infection. Lancet 390:2099.  https://doi.org/10.1016/S0140-6736(17)31450-2 CrossRefPubMedGoogle Scholar
  4. Beltramello M, Williams KL, Simmons CP, Macagno A, Simonelli L, Quyen NT, Sukupolvi-Petty S, Navarro-Sanchez E, Young PR, de Silva AM, Rey FA, Varani L, Whitehead SS, Diamond MS, Harris E, Lanzavecchia A, Sallusto F (2010) The human immune response to dengue virus is dominated by highly cross-reactive antibodies endowed with neutralizing and enhancing activity. Cell Host Microbe 8(3):271–283.  https://doi.org/10.1016/j.chom.2010.08.007 CrossRefPubMedGoogle Scholar
  5. Bhardwaj S, Holbrook M, Shope RE, Barrett AD, Watowich SJ (2001) Biophysical characterization and vector-specific antagonist activity of domain III of the tick-borne flavivirus envelope protein. J Virol 75(8):4002–4007.  https://doi.org/10.1128/JVI.75.8.4002-4007.2001 CrossRefPubMedPubMedCentralGoogle Scholar
  6. Bogoch II, Brady OJ, Kraemer MUG, German M, Creatore MI, Kulkarni MA, Brownstein JS, Mekaru SR, Hay SI, Groot E, Watts A, Khan K (2016) Anticipating the international spread of Zika virus from Brazil. Lancet 387(10016):335–336.  https://doi.org/10.1016/S0140-6736(16)00080-5 CrossRefPubMedPubMedCentralGoogle Scholar
  7. Bressanelli S, Stiasny K, Allison SL, Stura EA, Duquerroy S, Lescar J, Heinz FX, Rey FA (2004) Structure of a flavivirus envelope glycoprotein in its low-pH-induced membrane fusion conformation. EMBO J 23(4):728–738.  https://doi.org/10.1038/sj.emboj.7600064 CrossRefPubMedPubMedCentralGoogle Scholar
  8. Brito CA, Cordeiro MT (2016) One year after the Zika virus outbreak in Brazil: from hypotheses to evidence. Rev Soc Bras Med Trop 49(5):537–543.  https://doi.org/10.1590/0037-8682-0328-2016 CrossRefPubMedGoogle Scholar
  9. Cao-Lormeau VM, Roche C, Teissier A, Robin E, Berry AL, Mallet HP, Sall AA, Musso D (2014) Zika virus, French polynesia, south pacific, 2013. Emerg Infect Dis 20(6):1085–1086.  https://doi.org/10.3201/eid2006.140138 CrossRefPubMedPubMedCentralGoogle Scholar
  10. Chan JF, Chik KK, Yuan S, Yip CC, Zhu Z, Tee KM, Tsang JO, Chan CC, Poon VK, Lu G, Zhang AJ, Lai KK, Chan KH, Kao RY, Yuen KY (2017) Novel antiviral activity and mechanism of bromocriptine as a Zika virus NS2B-NS3 protease inhibitor. Antivir Res 141:29.  https://doi.org/10.1016/j.antiviral.2017.02.002 CrossRefPubMedGoogle Scholar
  11. Chavez JH, Silva JR, Amarilla AA, Moraes Figueiredo LT (2010) Domain III peptides from flavivirus envelope protein are useful antigens for serologic diagnosis and targets for immunization. Biologicals : journal of the International Association of Biological Standardization 38(6):613–618.  https://doi.org/10.1016/j.biologicals.2010.07.004 CrossRefGoogle Scholar
  12. Chu JJ, Rajamanonmani R, Li J, Bhuvanakantham R, Lescar J, Ng ML (2005) Inhibition of West Nile virus entry by using a recombinant domain III from the envelope glycoprotein. J Gen Virol 86(Pt 2):405–412.  https://doi.org/10.1099/vir.0.80411-0 CrossRefPubMedGoogle Scholar
  13. Chu J-HJ, Chiang C-CS, Ng M-L (2007) Immunization of Flavivirus West Nile recombinant envelope domain III protein induced specific immune response and protection against West Nile virus infection. J Immunol 178(5):2699–2705.  https://doi.org/10.4049/jimmunol.178.5.2699 CrossRefPubMedGoogle Scholar
  14. Chung KM, Liszewski MK, Nybakken G, Davis AE, Townsend RR, Fremont DH, Atkinson JP, Diamond MS (2006a) West Nile virus nonstructural protein NS1 inhibits complement activation by binding the regulatory protein factor H. Proc Natl Acad Sci U S A 103(50):19111–19116.  https://doi.org/10.1073/pnas.0605668103 CrossRefPubMedPubMedCentralGoogle Scholar
  15. Chung KM, Nybakken GE, Thompson BS, Engle MJ, Marri A, Fremont DH, Diamond MS (2006b) Antibodies against West Nile virus nonstructural protein NS1 prevent lethal infection through fc gamma receptor-dependent and -independent mechanisms. J Virol 80(3):1340–1351.  https://doi.org/10.1128/Jvi.80.3.1340-1351.2006 CrossRefPubMedPubMedCentralGoogle Scholar
  16. Cockburn JJB, Sanchez MEN, Goncalvez AP, Zaitseva E, Stura EA, Kikuti CM, Duquerroy S, Dussart P, Chernomordik LV, Lai CJ, Rey FA (2012) Structural insights into the neutralization mechanism of a higher primate antibody against dengue virus. EMBO J 31(3):767–779.  https://doi.org/10.1038/emboj.2011.439 CrossRefPubMedGoogle Scholar
  17. Dai L, Song J, Lu X, Deng YQ, Musyoki AM, Cheng H, Zhang Y, Yuan Y, Song H, Haywood J, Xiao H, Yan J, Shi Y, Qin CF, Qi J, Gao GF (2016a) Structures of the Zika virus envelope protein and its complex with a flavivirus broadly protective antibody. Cell Host Microbe 19(5):696–704.  https://doi.org/10.1016/j.chom.2016.04.013 CrossRefPubMedGoogle Scholar
  18. Dai L, Wang Q, Qi J, Shi Y, Yan J, Gao GF (2016b) Molecular basis of antibody-mediated neutralization and protection against flavivirus. IUBMB Life 68(10):783–791.  https://doi.org/10.1002/iub.1556 CrossRefPubMedGoogle Scholar
  19. Deckard DT, Chung WM, Brooks JT, Smith JC, Woldai S, Hennessey M, Kwit N, Mead P (2016) Male-to-male sexual transmission of Zika virus--Texas, January 2016. MMWR Morb Mortal Wkly Rep 65(14):372–374.  https://doi.org/10.15585/mmwr.mm6514a3 CrossRefPubMedGoogle Scholar
  20. Dejnirattisai W, Jumnainsong A, Onsirisakul N, Fitton P, Vasanawathana S, Limpitikul W, Puttikhunt C, Edwards C, Duangchinda T, Supasa S, Chawansuntati K, Malasit P, Mongkolsapaya J, Screaton G (2010) Cross-reacting antibodies enhance dengue virus infection in humans. Science 328(5979):745–748.  https://doi.org/10.1126/science.1185181 CrossRefPubMedGoogle Scholar
  21. Deng Y-Q, Dai J-X, Ji G-H, Jiang T, Wang H-J, H-o Y, Tan W-L, Liu R, Yu M, Ge B-X, Zhu Q-Y, Qin ED, Guo Y-J, Qin C-F (2011) A broadly flavivirus cross-neutralizing monoclonal antibody that recognizes a novel epitope within the fusion loop of E protein. PloS One 6(1):e16059.  https://doi.org/10.1371/journal.pone.0016059 CrossRefPubMedPubMedCentralGoogle Scholar
  22. Dick GW, Kitchen SF, Haddow AJ (1952) Zika virus. I. Isolations and serological specificity. Trans R Soc Trop Med Hyg 46(5):509–520CrossRefGoogle Scholar
  23. D'Ortenzio E, Matheron S, Yazdanpanah Y, de Lamballerie X, Hubert B, Piorkowski G, Maquart M, Descamps D, Damond F, Leparc-Goffart I (2016) Evidence of sexual transmission of Zika virus. N Engl J Med 374(22):2195–2198.  https://doi.org/10.1056/NEJMc1604449 CrossRefPubMedGoogle Scholar
  24. Dos Santos T, Rodriguez A, Almiron M, Sanhueza A, Ramon P, de Oliveira WK, Coelho GE, Badaro R, Cortez J, Ospina M, Pimentel R, Masis R, Hernandez F, Lara B, Montoya R, Jubithana B, Melchor A, Alvarez A, Aldighieri S, Dye C, Espinal MA (2016) Zika virus and the Guillain-Barre syndrome - case series from seven countries. N Engl J Med 375(16):1598–1601.  https://doi.org/10.1056/NEJMc1609015 CrossRefPubMedGoogle Scholar
  25. Dowd KA, Pierson TC (2011) Antibody-mediated neutralization of flaviviruses: a reductionist view. Virology 411(2):306–315.  https://doi.org/10.1016/j.virol.2010.12.020 CrossRefPubMedPubMedCentralGoogle Scholar
  26. Dowd KA, Jost CA, Durbin AP, Whitehead SS, Pierson TC (2011) A dynamic landscape for antibody binding modulates antibody-mediated neutralization of West Nile virus. PLoS Pathog 7(6):e1002111.  https://doi.org/10.1371/journal.ppat.1002111 CrossRefPubMedPubMedCentralGoogle Scholar
  27. Dowd KA, Mukherjee S, Kuhn RJ, Pierson TC (2014) Combined effects of the structural heterogeneity and dynamics of flaviviruses on antibody recognition. J Virol 88(20):11726–11737.  https://doi.org/10.1128/JVI.01140-14 CrossRefPubMedPubMedCentralGoogle Scholar
  28. Duan W, Song H, Wang H, Chai Y, Su C, Qi J, Shi Y, Gao GF (2017) The crystal structure of Zika virus NS5 reveals conserved drug targets. EMBO J 36(7):919–933.  https://doi.org/10.15252/embj.201696241 CrossRefPubMedPubMedCentralGoogle Scholar
  29. Duffy MR, Chen TH, Hancock WT, Powers AM, Kool JL, Lanciotti RS, Pretrick M, Marfel M, Holzbauer S, Dubray C, Guillaumot L, Griggs A, Bel M, Lambert AJ, Laven J, Kosoy O, Panella A, Biggerstaff BJ, Fischer M, Hayes EB (2009) Zika virus outbreak on Yap Island, Federated States of Micronesia. N Engl J Med 360(24):2536–2543.  https://doi.org/10.1056/NEJMoa0805715 CrossRefPubMedGoogle Scholar
  30. Fibriansah G, Ng TS, Kostyuchenko VA, Lee J, Lee S, Wang J, Lok SM (2013) Structural changes in dengue virus when exposed to a temperature of 37 degrees C. J Virol 87(13):7585–7592.  https://doi.org/10.1128/JVI.00757-13 CrossRefPubMedPubMedCentralGoogle Scholar
  31. Fibriansah G, Ibarra KD, Ng TS, Smith SA, Tan JL, Lim XN, Ooi JS, Kostyuchenko VA, Wang J, de Silva AM, Harris E, Crowe JE, Jr., Lok SM (2015) DENGUE VIRUS. Cryo-EM structure of an antibody that neutralizes dengue virus type 2 by locking E protein dimers. Science 349 (6243):88–91. doi: https://doi.org/10.1126/science.aaa8651 CrossRefPubMedPubMedCentralGoogle Scholar
  32. Garcia Serpa Osorio-de-Castro C, Silva Miranda E, Machado de Freitas C, Rochel de Camargo K Jr, Cranmer HH (2017) The Zika virus outbreak in Brazil: knowledge gaps and challenges for risk reduction. Am J Public Health 107(6):960–965.  https://doi.org/10.2105/AJPH.2017.303705 CrossRefPubMedGoogle Scholar
  33. Govero J, Esakky P, Scheaffer SM, Fernandez E, Drury A, Platt DJ, Gorman MJ, Richner JM, Caine EA, Salazar V, Moley KH, Diamond MS (2016) Zika virus infection damages the testes in mice. Nature 540(7633):438–442.  https://doi.org/10.1038/nature20556 CrossRefPubMedPubMedCentralGoogle Scholar
  34. Gulland A (2016) Zika virus is a global public health emergency, declares WHO. BMJ 352:i657CrossRefGoogle Scholar
  35. Hasan SS, Miller A, Sapparapu G, Fernandez E, Klose T, Long F, Fokine A, Porta JC, Jiang W, Diamond MS, Crowe JE Jr, Kuhn RJ, Rossmann MG (2017) A human antibody against Zika virus crosslinks the E protein to prevent infection. Nat Commun 8:14722. https://doi.org/10.1038/ncomms14722 CrossRefPubMedPubMedCentralGoogle Scholar
  36. Heinz FX, Stiasny K (2012) Flaviviruses and flavivirus vaccines. Vaccine 30(29):4301–4306.  https://doi.org/10.1016/j.vaccine.2011.09.114 CrossRefPubMedGoogle Scholar
  37. Heinz FX, Stiasny K (2017) The antigenic structure of Zika virus and its relation to other flaviviruses: implications for Infection and immunoprophylaxis. Microbiol Molecular Biol Rev 81(1).  https://doi.org/10.1128/MMBR.00055-16 CrossRefGoogle Scholar
  38. Hills SL, Russell K, Hennessey M, Williams C, Oster AM, Fischer M, Mead P (2016) Transmission of Zika virus through sexual contact with travelers to areas of ongoing transmission - continental United States, 2016. MMWR Morb Mortal Wkly Rep 65(8):215–216.  https://doi.org/10.15585/mmwr.mm6508e2 CrossRefPubMedGoogle Scholar
  39. Kang C, Keller TH, Luo D (2017) Zika Virus Protease: An Antiviral Drug Target. Trends Microbiol 25:797.  https://doi.org/10.1016/j.tim.2017.07.001 CrossRefPubMedGoogle Scholar
  40. Kleber de Oliveira W, Cortez-Escalante J, De Oliveira WT, do Carmo GM, Henriques CM, Coelho GE, Araujo de Franca GV (2016) Increase in reported prevalence of microcephaly in infants born to women living in areas with confirmed Zika virus transmission during the first trimester of pregnancy - Brazil, 2015. MMWR Morb Mortal Wkly Rep 65(9):242–247.  https://doi.org/10.15585/mmwr.mm6509e2 CrossRefPubMedGoogle Scholar
  41. Knipe DM, Howley PM (2013) Fields virology, 6th edn. Wolters Kluwer/Lippincott Williams & Wilkins Health, PhiladelphiaGoogle Scholar
  42. Knipe DM, Howley PM, Cohen JI, Griffin DE, Lamb RA, Martin MA, Racanielo VR, Be R (2013) Fields virology, 6th edn. Lippincott Williams & Wilkins, PhiladelphiaGoogle Scholar
  43. Kostyuchenko VA, Lim EX, Zhang S, Fibriansah G, Ng TS, Ooi JS, Shi J, Lok SM (2016) Structure of the thermally stable Zika virus. Nature 533(7603):425–428.  https://doi.org/10.1038/nature17994 CrossRefPubMedGoogle Scholar
  44. Kuhn RJ, Dowd KA, Beth Post C, Pierson TC (2015) Shake, rattle, and roll: impact of the dynamics of flavivirus particles on their interactions with the host. Virology 479-480:508–517.  https://doi.org/10.1016/j.virol.2015.03.025 CrossRefPubMedPubMedCentralGoogle Scholar
  45. Lee E, Lobigs M (2000) Substitutions at the putative receptor-binding site of an encephalitic flavivirus alter virulence and host cell tropism and reveal a role for glycosaminoglycans in entry. J Virol 74(19):8867–8875.  https://doi.org/10.1128/jvi.74.19.8867-8875.2000 CrossRefPubMedPubMedCentralGoogle Scholar
  46. Lei J, Hansen G, Nitsche C, Klein CD, Zhang L, Hilgenfeld R (2016) Crystal structure of Zika virus NS2B-NS3 protease in complex with a boronate inhibitor. Science 353(6298):503–505.  https://doi.org/10.1126/science.aag2419 CrossRefPubMedGoogle Scholar
  47. Li L, Lok SM, Yu IM, Zhang Y, Kuhn RJ, Chen J, Rossmann MG (2008) The flavivirus precursor membrane-envelope protein complex: structure and maturation. Science 319(5871):1830–1834.  https://doi.org/10.1126/science.1153263 CrossRefPubMedGoogle Scholar
  48. Li J, Xiong Y, Wu W, Liu X, Qu J, Zhao X, Zhang S, Li J, Li W, Liao Y, Gong T, Wang L, Shi Y, Xiong Y, Ni D, Li Q, Liang M, Hu G, Li D (2016) Zika virus in a traveler returning to China from Caracas, Venezuela, February 2016. Emerg Infect Dis 22(6):1133–1136.  https://doi.org/10.3201/eid2206.160273 CrossRefPubMedPubMedCentralGoogle Scholar
  49. Ma W, Li S, Ma S, Jia L, Zhang F, Zhang Y, Zhang J, Wong G, Zhang S, Lu X, Liu M, Yan J, Li W, Qin C, Han D, Qin C, Wang N, Li X, Gao GF (2016) Zika virus causes testis damage and leads to male infertility in mice. Cell 167(6):1511–1524. e1510.  https://doi.org/10.1016/j.cell.2016.11.016 CrossRefPubMedGoogle Scholar
  50. Mandl CW, Allison SL, Holzmann H, Meixner T, Heinz FX (2000) Attenuation of tick-borne encephalitis virus by structure-based site-specific mutagenesis of a putative flavivirus receptor binding site. J Virol 74(20):9601–9609CrossRefGoogle Scholar
  51. Miner JJ, Diamond MS (2017) Zika virus pathogenesis and tissue tropism. Cell Host Microbe 21(2):134–142.  https://doi.org/10.1016/j.chom.2017.01.004 CrossRefPubMedPubMedCentralGoogle Scholar
  52. Miner JJ, Cao B, Govero J, Smith AM, Fernandez E, Cabrera OH, Garber C, Noll M, Klein RS, Noguchi KK, Mysorekar IU, Diamond MS (2016) Zika virus infection during pregnancy in mice causes placental damage and fetal demise. Cell 165(5):1081–1091.  https://doi.org/10.1016/j.cell.2016.05.008 CrossRefPubMedPubMedCentralGoogle Scholar
  53. Modis Y, Ogata S, Clements D, Harrison SC (2004) Structure of the dengue virus envelope protein after membrane fusion. Nature 427(6972):313–319.  https://doi.org/10.1038/nature02165 CrossRefPubMedGoogle Scholar
  54. Mukhopadhyay S, Kuhn RJ, Rossmann MG (2005) A structural perspective of the flavivirus life cycle. Nat Rev Microbiol 3(1):13–22.  https://doi.org/10.1038/nrmicro1067 CrossRefPubMedGoogle Scholar
  55. Musso D, Nilles EJ, Cao-Lormeau VM (2014) Rapid spread of emerging Zika virus in the Pacific area. Clin Microbiol Infect 20(10):O595–O596.  https://doi.org/10.1111/1469-0691.12707 CrossRefPubMedGoogle Scholar
  56. Oliphant T, Nybakken GE, Engle M, Xu Q, Nelson CA, Sukupolvi-Petty S, Marri A, Lachmi BE, Olshevsky U, Fremont DH, Pierson TC, Diamond MS (2006) Antibody recognition and neutralization determinants on domains I and II of West Nile virus envelope protein. J Virol 80(24):12149–12159.  https://doi.org/10.1128/JVI.01732-06 CrossRefPubMedPubMedCentralGoogle Scholar
  57. Pierson TC, Fremont DH, Kuhn RJ, Diamond MS (2008) Structural insights into the mechanisms of antibody-mediated neutralization of flavivirus infection: implications for vaccine development. Cell Host Microbe 4(3):229–238.  https://doi.org/10.1016/j.chom.2008.08.004 CrossRefPubMedPubMedCentralGoogle Scholar
  58. Plevka P, Battisti AJ, Junjhon J, Winkler DC, Holdaway HA, Keelapang P, Sittisombut N, Kuhn RJ, Steven AC, Rossmann MG (2011) Maturation of flaviviruses starts from one or more icosahedrally independent nucleation centres. EMBO Rep 12(6):602–606.  https://doi.org/10.1038/embor.2011.75 CrossRefPubMedPubMedCentralGoogle Scholar
  59. Ramanathan MP, Kutzler MA, Kuo YC, Yan J, Liu H, Shah V, Bawa A, Selling B, Sardesai NY, Kim JJ, Weiner DB (2009) Coimmunization with an optimized IL15 plasmid adjuvant enhances humoral immunity via stimulating B cells induced by genetically engineered DNA vaccines expressing consensus JEV and WNV E DIII. Vaccine 27(32):4370–4380.  https://doi.org/10.1016/j.vaccine.2009.01.137 CrossRefPubMedGoogle Scholar
  60. Rasmussen SA, Jamieson DJ, Honein MA, Petersen LR (2016) Zika virus and birth defects--reviewing the evidence for causality. N Engl J Med 374(20):1981–1987.  https://doi.org/10.1056/NEJMsr1604338 CrossRefPubMedGoogle Scholar
  61. Richner JM, Himansu S, Dowd KA, Butler SL, Salazar V, Fox JM, Julander JG, Tang WW, Shresta S, Pierson TC, Ciaramella G, Diamond MS (2017) Modified mRNA vaccines protect against Zika virus infection. Cell 168(6):1114–1125. e1110.  https://doi.org/10.1016/j.cell.2017.02.017 CrossRefPubMedPubMedCentralGoogle Scholar
  62. Robbiani DF, Bozzacco L, Keeffe JR, Khouri R, Olsen PC, Gazumyan A, Schaefer-Babajew D, Avila-Rios S, Nogueira L, Patel R, Azzopardi SA, Uhl LFK, Saeed M, Sevilla-Reyes EE, Agudelo M, Yao KH, Golijanin J, Gristick HB, Lee YE, Hurley A, Caskey M, Pai J, Oliveira T, Wunder EA Jr, Sacramento G, Nery N Jr, Orge C, Costa F, Reis MG, Thomas NM, Eisenreich T, Weinberger DM, de Almeida ARP, West AP Jr, Rice CM, Bjorkman PJ, Reyes-Teran G, Ko AI, MacDonald MR, Nussenzweig MC (2017) Recurrent potent human neutralizing antibodies to Zika virus in Brazil and Mexico. Cell 169(4):597–609. e511.  https://doi.org/10.1016/j.cell.2017.04.024 CrossRefPubMedPubMedCentralGoogle Scholar
  63. Rouvinski A, Guardado-Calvo P, Barba-Spaeth G, Duquerroy S, Vaney MC, Kikuti CM, Navarro Sanchez ME, Dejnirattisai W, Wongwiwat W, Haouz A, Girard-Blanc C, Petres S, Shepard WE, Despres P, Arenzana-Seisdedos F, Dussart P, Mongkolsapaya J, Screaton GR, Rey FA (2015) Recognition determinants of broadly neutralizing human antibodies against dengue viruses. Nature 520(7545):109–113.  https://doi.org/10.1038/nature14130 CrossRefPubMedGoogle Scholar
  64. Sapparapu G, Fernandez E, Kose N, Bin C, Fox JM, Bombardi RG, Zhao H, Nelson CA, Bryan AL, Barnes T, Davidson E, Mysorekar IU, Fremont DH, Doranz BJ, Diamond MS, Crowe JE (2016) Neutralizing human antibodies prevent Zika virus replication and fetal disease in mice. Nature 540(7633):443–447.  https://doi.org/10.1038/nature20564 CrossRefPubMedPubMedCentralGoogle Scholar
  65. Schlesinger JJ, Foltzer M, Chapman S (1993) The fc portion of antibody to yellow-fever virus-Ns1 is a determinant of protection against Yf encephalitis in mice. Virology 192 (1):132-141. DOI:DOI.  https://doi.org/10.1006/viro.1993.1015
  66. Shi Y, Gao GF (2017) Structural biology of the Zika virus. Trends Biochem Sci 42(6):443–456.  https://doi.org/10.1016/j.tibs.2017.02.009 CrossRefPubMedGoogle Scholar
  67. Simpson DI (1964) Zika virus infection in man. Trans R Soc Trop Med Hyg 58:335–338CrossRefGoogle Scholar
  68. Stettler K, Beltramello M, Espinosa DA, Graham V, Cassotta A, Bianchi S, Vanzetta F, Minola A, Jaconi S, Mele F, Foglierini M, Pedotti M, Simonelli L, Dowall S, Atkinson B, Percivalle E, Simmons CP, Varani L, Blum J, Baldanti F, Cameroni E, Hewson R, Harris E, Lanzavecchia A, Sallusto F, Corti D (2016) Specificity, cross-reactivity and function of antibodies elicited by Zika virus infection. Science 353(6301):823–826.  https://doi.org/10.1126/science.aaf8505 CrossRefPubMedGoogle Scholar
  69. Vogt MR, Dowd KA, Engle M, Tesh RB, Johnson S, Pierson TC, Diamond MS (2011) Poorly neutralizing cross-reactive antibodies against the fusion loop of West Nile virus envelope protein protect in vivo via Fcgamma receptor and complement-dependent effector mechanisms. J Virol 85(22):11567–11580.  https://doi.org/10.1128/JVI.05859-11 CrossRefPubMedPubMedCentralGoogle Scholar
  70. Wang Q, Yang H, Liu X, Dai L, Ma T, Qi J, Wong G, Peng R, Liu S, Li J, Li S, Song J, Liu J, He J, Yuan H, Xiong Y, Liao Y, Li J, Yang J, Tong Z, Griffin BD, Bi Y, Liang M, Xu X, Qin C, Cheng G, Zhang X, Wang P, Qiu X, Kobinger G, Shi Y, Yan J, Gao GF (2016) Molecular determinants of human neutralizing antibodies isolated from a patient infected with Zika virus. Sci Transl Med 8(369):369ra179.  https://doi.org/10.1126/scitranslmed.aai8336 CrossRefPubMedGoogle Scholar
  71. Watterson D, Kobe B, Young PR (2012) Residues in domain III of the dengue virus envelope glycoprotein involved in cell-surface glycosaminoglycan binding. J Gen Virol 93(Pt 1):72–82.  https://doi.org/10.1099/vir.0.037317-0 CrossRefPubMedGoogle Scholar
  72. Wikan N, Smith DR (2016) Zika virus: history of a newly emerging arbovirus. Lancet Infect Dis 16(7):e119–e126.  https://doi.org/10.1016/S1473-3099(16)30010-X CrossRefPubMedGoogle Scholar
  73. Xu X, Song H, Qi J, Liu Y, Wang H, Su C, Shi Y, Gao GF (2016) Contribution of intertwined loop to membrane association revealed by Zika virus full-length NS1 structure. EMBO J 35(20):2170–2178.  https://doi.org/10.15252/embj.201695290 CrossRefPubMedPubMedCentralGoogle Scholar
  74. Young PR, Hilditch PA, Bletchly C, Halloran W (2000) An antigen capture enzyme-linked immunosorbent assay reveals high levels of the dengue virus protein NS1 in the sera of infected patients. J Clin Microbiol 38(3):1053–1057PubMedPubMedCentralGoogle Scholar
  75. Yun SI, Lee YM (2017) Zika virus: An emerging flavivirus. J Microbiol 55(3):204–219.  https://doi.org/10.1007/s12275-017-7063-6 CrossRefPubMedGoogle Scholar
  76. Zhang X, Sheng J, Plevka P, Kuhn RJ, Diamond MS, Rossmann MG (2013) Dengue structure differs at the temperatures of its human and mosquito hosts. Proc Natl Acad Sci U S A 110(17):6795–6799.  https://doi.org/10.1073/pnas.1304300110 CrossRefPubMedPubMedCentralGoogle Scholar
  77. Zhang S, Kostyuchenko VA, Ng TS, Lim XN, Ooi JS, Lambert S, Tan TY, Widman DG, Shi J, Baric RS, Lok SM (2016) Neutralization mechanism of a highly potent antibody against Zika virus. Nat Commun 7:13679.  https://doi.org/10.1038/ncomms13679 CrossRefPubMedPubMedCentralGoogle Scholar
  78. Zhao H, Fernandez E, Dowd KA, Speer SD, Platt DJ, Gorman MJ, Govero J, Nelson CA, Pierson TC, Diamond MS, Fremont DH (2016) Structural basis of Zika virus-specific antibody protection. Cell 166(4):1016–1027.  https://doi.org/10.1016/j.cell.2016.07.020 CrossRefPubMedPubMedCentralGoogle Scholar

Copyright information

© Springer Nature Singapore Pte Ltd. 2018

Authors and Affiliations

  1. 1.Research Network of Immunity and Health (RNIH), Beijing Institutes of Life Science, Chinese Academy of SciencesBeijingChina
  2. 2.CAS Key Laboratory of Microbial Physiological and Metabolic Engineering, Institute of Microbiology, Chinese Academy of SciencesBeijingChina
  3. 3.CAS Key Laboratory of Pathogenic Microbiology and Immunology, Institute of Microbiology, Chinese Academy of SciencesBeijingChina
  4. 4.National Institute for Viral Disease Control and Prevention, Chinese Center for Disease Control and Prevention (China CDC)BeijingChina

Personalised recommendations