Skip to main content

Elucidation of Mechanisms of Anticancer Plant Compounds Against the Tumor Cells

  • Chapter
  • First Online:
Anticancer Plants: Mechanisms and Molecular Interactions

Abstract

Cancer is one of the noncommunicable diseases which is the second leading cause of deaths throughout the world. Chemotherapy is the major treatment approach, however, with a limited success rate accompanied by secondary adverse health effects. Moreover, in recent years, about 30–80% of cancer patients are developing resistance to chemotherapeutic drugs. Therefore, phytoconstituents have attained much attention among the researchers because of their effective multiple targeted cytotoxicity with a tolerable side effects and chemosensitizing potential. These are known to exhibit their anticancer activities in various ways of molecular mechanisms of action, such as arresting of cell cycle, inhibiting angiogenesis, inhibiting enzymes (cyclooxygenase, caspases, kinase matrix metalloproteinase (MMP), poly(ADP-ribose) polymerase 1 (PARP-1), etc.), inhibiting transcription factors, suppressing pro-inflammatory signaling pathways, inhibiting lipid signals, and inhibiting heat shock proteins. Though scientific evidences have suggested many plant compounds with chemopreventive potential, understanding the issues related to exposure time, bioavailability, toxic effects, and mechanisms of action will certainly help to identify the leads and utilize them against various cancer types. The present chapter deals with the anticancer effect of several compounds of plant origin and their mechanisms of action.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Agarwal R, Agarwal C, Ichikawa H, Singh RP, Aggarwal BB (2006) Anticancer potential of silymarin: from bench to bed side. Anticancer Res 26:4457–4498

    PubMed  CAS  Google Scholar 

  • Agostinis P, Vantieghem A, Merlevede W, de Witte PA (2002) Hypericin in cancer treatment: more light on the way. Int J Biochem Cell Biol 34:221–241

    Article  CAS  PubMed  Google Scholar 

  • Amador ML, Jimeno J, Paz-Ares L, Cortes-Funes H, Hidalgo M (2003) Progress in the development and acquisition of anticancer agents from marine sources. Ann Oncol 14:1607–1615

    Article  CAS  PubMed  Google Scholar 

  • Bae WY, Choi JS, Kim JE, Park C, Jeong JW (2016) Zingerone suppresses angiogenesis via inhibition of matrix metalloproteinases during tumor development. Oncotarget 7:47232–47241

    PubMed  PubMed Central  Google Scholar 

  • Basmadjian C, Zhao Q, Bentouhami E, Djehal A, Nebigil CG, Johnson RA, Serova M, De Gramont A, Faivre S, Raymond E, Désaubry LG (2014) Cancer wars: natural products strike back. Front Chem 2:20. https://doi.org/10.3389/fchem.2014.00020

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Batra P, Sharma AK (2013) Anticancer potential of flavonoids: recent trends and future perspectives. 3Biotech 3:439–459

    Google Scholar 

  • Bhardwaj V, Tadinada SM, Jain A, Sehdev V, Daniels CK, Lai JC, Bhushan A (2014) Biochanin a reduces pancreatic cancer survival and progression. Anti-Cancer Drugs 25:296–302

    Article  CAS  PubMed  Google Scholar 

  • Bi MC, Rosen R, Zha RY, McCormick SA, Song E, Hu DN (2013) Zeaxanthin induces apoptosis in human uveal melanoma cells through Bcl-2 family proteins and intrinsic apoptosis pathway. Evid Based Complement Alternat Med 2013:205082. https://doi.org/10.1155/2013/205082

    Article  PubMed  PubMed Central  Google Scholar 

  • Bin Hafeez B, Asim M, Siddiqui IA, Adhami VM, Murtaza I, Mukhtar H (2008) Delphinidin, a dietary anthocyanidin in pigmented fruits and vegetables: a new weapon to blunt prostate cancer growth. Cell Cycle 7:3320–3326

    Article  CAS  PubMed  Google Scholar 

  • Brocato J, Chervona Y, Costa M (2014) Molecular responses to hypoxia inducible factor 1α and beyond. Mol Pharmacol 85:651–657

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Broggini M, Marchini SV, Galliera E, Borsotti P, Taraboletti G, Erba E, Sironi M, Jimeno J, Faircloth GT, Giavazzi R, D'Incalci M (2003) Aplidine, a new anticancer agent of marine origin, inhibits vascular endothelial growth factor (VEGF) secretion and blocks VEGF-VEGFR-1 (flt- 1) autocrine loop in human leukemia cells MOLT-4. Leukemia 17:52–59

    Article  CAS  PubMed  Google Scholar 

  • Cao J, Wang H, Chen F, Fang J, Xu A, Xi W, Zhang S, Wu G, Wang Z (2016) Galangin inhibits cell invasion by suppressing the epithelial-mesenchymal transition and inducing apoptosis in renal cell carcinoma. Mol Med Rep 13:4238–4244

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Chang WC, Hsieh CH, Hsiao MW, Lin WC, Hung YC, Ye JC (2010) Caffeic acid induces apoptosis in human cervical cancer cells through the mitochondrial pathway. Taiwan J Obstet Gynecol 49:419–424

    Article  PubMed  Google Scholar 

  • Chavan SS, Damale MG, Shamkuwar PB, Pawar DP (2013) Traditional medicinal plants for anticancer activity. Int J Curr Pharm Res 5:50–54

    Google Scholar 

  • Collins K, Jacks T, Pavletich NP (1997) The cell cycle and cancer. Proc Natl Acad Sci U S A 94:2776–2778

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Costa-Lotufo LV, Khan MTH, Ather A, Wilke DV, Jimenez PC, Pessoa C, de Moraes MO (2005) Studies of the anticancer potential of plants used in Bangladeshi folk medicine. J Ethnopharmacol 99:21–30

    Article  PubMed  Google Scholar 

  • Cragg GM, Newman DJ (2005) Plants as a source of anticancer agents. J Ethnopharmacol 100:72–79

    Article  CAS  PubMed  Google Scholar 

  • Cummings MC, Winderford CM, Walker NI (1997) Apoptosis. Am J Surg Pathol 21:88–101

    Article  CAS  PubMed  Google Scholar 

  • Demain AL, Vaishnav P (2011) Natural products for cancer chemotherapy. Microb Biotechnol 4:687–699

    Article  PubMed  PubMed Central  Google Scholar 

  • Edderkaoui M, Odinokova I, Ohno I, Gukovsky I, Go VLW, Pandol SJ, Gukovskaya AS (2008) Ellagic acid induces apoptosis through inhibition of nuclear factor κB in pancreatic cancer cells. World J Gastroenterol 14:3672–3680

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Eid SY, El-Readi MZ, Fatani SH, Eldin EEMN, Wink M (2015) Natural products modulate the multifactorial multidrug resistance of cancer. Pharmacol Pharm 6:146–176

    Article  CAS  Google Scholar 

  • El-Alfy TS, Ezzat SM, Hegazy AK, Amer AM, Kamel GM (2011) Isolation of biologically active constituents from Moringa peregrina (Forssk.) Fiori. (family: Moringaceae) growing in Egypt. Pharmacogn Mag 7:109–115

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Elks PM, Renshaw SA, Meijer AH, Walmsley SR, van Eeden FJ (2015) Exploring the HIFs, buts and maybes of hypoxia signalling in disease: lessons from zebrafish models. Dis Model Mech 8:1349–1360

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Fulda S, Debatin KM (2006) Extrinsic versus intrinsic apoptosis pathways in anticancer chemotherapy. Oncogene 25:4798–4811

    Article  CAS  PubMed  Google Scholar 

  • Fusetani N, Sugawara T, Matsunaga S (1992) Theopederins A-E, potent antitumor metabolites from a marine sponge, Theonella sp. J Org Chem 57:3828–3832

    Article  CAS  Google Scholar 

  • Gali-Muhtasib H, Hmadi R, Kareh M, Tohme R, Darwiche N (2015) Cell death mechanisms of plant derived anticancer drugs: beyond apoptosis. Apoptosis 20:1531–1562

    Article  CAS  PubMed  Google Scholar 

  • Greenwell M, Rahman PKSM (2015) Medicinal plants: their use in anticancer treatment. Int J Pharma Sci Res 6:4103–4112

    CAS  Google Scholar 

  • Haghshenas V, Fakhari S, Mirzaie S, Rahmani M, Farhadifar F, Pirzadeh S, Jalili A (2014) Glycyrrhetinic acid inhibits cell growth and induces apoptosis in ovarian cancer A2780 cells. Adv Pharm Bull 4:437–441

    PubMed  PubMed Central  CAS  Google Scholar 

  • Hirano T, Gotoh M, Oka K (1994) Natural flavonoids and lignans are potent cytostatic agents against human leukemic HL-60 cells. Life Sci 55:1061–1069

    Article  CAS  PubMed  Google Scholar 

  • Hossan MS, Rahman S, Bashar ABMA, Jahan R, Al-Nahain A, Rahmatullah M (2014) Rosmarinic acid: a review of its anticancer action. World. J Pharm Pharm Sci 3:57–70

    Google Scholar 

  • Huang YH, Zhang SH, Zhen RX, Xu XD, Zhen YS (2004) Asiaticoside inducing apoptosis of tumor cells and enhancing anti-tumor activity of vincristine. Ai Zheng 23:1599–1604

    PubMed  CAS  Google Scholar 

  • Hwang HC, Clurman BE (2005) Cyclin E in normal and neoplastic cell cycles. Oncogene 24:2776–2786

    Article  CAS  PubMed  Google Scholar 

  • Iannolo G, Conticello C, Memeo L, De Maria R (2008) Apoptosis in normal and cancer stem cells. Crit Rev Oncol Hematol 66:42–51

    Article  PubMed  Google Scholar 

  • Jaikumar B, Jasmine R (2016) A review on a few medicinal plants possessing anticancer activity against human breast cancer. Int J Pharm Tech Res 9:333–365

    CAS  Google Scholar 

  • Jaramillo MC, Zhang DD (2013) The emerging role of the Nrf2-Keap1 signaling pathway in cancer. Genes Dev 27:2179–2191

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Jemal A, Bray F, Center MM, Ferlay J, Ward E, Forman D (2011) Global cancer statistics. CA Cancer J Clin 61:69–90

    Article  PubMed  Google Scholar 

  • Jin YM, Xu TM, Zhao YH, Wang YC, Cui MH (2014) In vitro and in vivo anticancer activity of form ononetin on human cervical cancer cell line HeLa. Tumor Biol 35:2279–2284

    Article  CAS  Google Scholar 

  • Juárez P (2014) Plant-derived anticancer agents: a promising treatment for bone metastasis. Bonekey Rep 3:599. https://doi.org/10.1038/bonekey.2014.94

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Kamkaen N, Wilkinson JM, Cavanagh HM (2006) Cytotoxic effect of four Thai edible plants on mammalian cell proliferation. Thai Pharma Health Sci J 1:189–195

    Google Scholar 

  • Kang MH, Kim IH, Nam TJ (2014) Phloroglucinol induces apoptosis via apoptotic signaling pathways in HT-29 colon cancer cells. Oncol Rep 32:1341–1346

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kaur R, Singh J, Singh G, Kaur H (2011) Anticancer plants: a review. J Nat Prod Plant Resour 1:131–136

    Google Scholar 

  • Khanna V, Kannabiran K (2009) Anticancer cytotoxic activity of saponins isolated from the leaves of Gymnema sylvestre and Eclipta prostrata on HeLa cells. Int J Green Pharm 3:227–229

    Article  Google Scholar 

  • Khoo BY, Chua SL, Balaram P (2010) Apoptotic effects of chrysin in human cancer cell lines. Int J Mol Sci 11:2188–2199

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kim S, Hwang BY, Su BN, Chai H, Mi Q, Kinghorn AD, Wild R, Swanson SM (2007) Silvestrol, a potential anticancer rocaglate derivative from Aglaia foveolata, induces apoptosis in LNCaP cells through the mitochondrial/apoptosome pathway without activation of executioner caspase-3 or-7. Anticancer Res 27:2175–2183

    PubMed  PubMed Central  CAS  Google Scholar 

  • Kim SH, Kim SH, Kim YB, Jeon YT, Lee SC, Song YS (2009) Genistein inhibits cell growth by modulating various mitogen-activated protein kinases and AKT in cervical cancer cells. Ann N Y Acad Sci 1171:495–500

    Article  CAS  PubMed  Google Scholar 

  • Kirana C, Jones GP, Record IR, McIntosh GH (2007) Anticancer properties of panduratin a isolated from Boesenbergia pandurata (Zingiberaceae). J Nat Med 61:131–137

    Article  CAS  Google Scholar 

  • Klauzinska M, Bertolette D, Tippireddy S, Strizzi L, Gray PC, Gonzales M, Duroux M, Ruvo M, Wechselberger C, Castro NP, Rangel MC (2015) Cripto-1: an extracellular protein-connecting the sequestered biological dots. Connect Tissue Res 56:364–380

    Article  CAS  PubMed  Google Scholar 

  • Ko EY, Moon A (2015) Natural products for chemoprevention of breast cancer. J Cancer Prev 20:223–231

    Article  PubMed  PubMed Central  Google Scholar 

  • Kolch W (2000) Meaningful relationships: the regulation of the Ras/Raf/MEK/ERK pathway by protein interactions. Biochem J 351:289–305

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kubo I, Ochi M, Vieira PC, Komatsu S (1993) Antitumor agents from the cashew (Anacardium occidentale) apple juice. J Agric Food Chem 41:1012–1015

    Article  CAS  Google Scholar 

  • Lee JY, Kim HS, Song YS (2012) Genistein as a potential anticancer agent against ovarian cancer. J Tradit Compl Med 2:96–104

    Article  Google Scholar 

  • Lieberman J (2010) Granzyme a activates another way to die. Immunol Rev 235:93–104

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lin RJ, Yen CM, Chou TH, Chiang FY, Wang GH, Tseng YP, Wang L, Huang TW, Wang HC, Chan LP, Ding HY (2013) Antioxidant, anti-adipocyte differentiation, antitumor activity and anthelmintic activities against Anisakis simplex and Hymenolepis nana of yakuchinone a from Alpinia oxyphylla. BMC Compl Altern Med 13:237

    Article  Google Scholar 

  • Liu P, Cheng H, Roberts TM, Zhao JJ (2009) Targeting the phosphoinositide 3-kinase pathway in cancer. Nat Rev Drug Discov 8:627–644

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • López-Biedma A, Sánchez-Quesada C, Beltrán G, Delgado-Rodríguez M, Gaforio JJ (2016) Phytoestrogen (+)-pinoresinol exerts antitumor activity in breast cancer cells with different oestrogen receptor statuses. BMC Compl Altern Med 16:350

    Article  CAS  Google Scholar 

  • Lowe SW, Lin AW (2000) Apoptosis in cancer. Carcinogenesis 21:485–495

    Article  CAS  PubMed  Google Scholar 

  • Macherla VR, Mitchell SS, Manam RR, Reed KA, Chao TH, Nicholson B, Deyanat-Yazdi G, Mai B, Jensen PR, Fenical WF, Neuteboom ST (2005) Structure activity relationship studies of salinosporamide a (NPI-0052), a novel marine derived proteasome inhibitor. J Med Chem 48:3684–3687

    Article  CAS  PubMed  Google Scholar 

  • Mans DR, Da Rocha AB, Schwartsmann G (2000) Anticancer drug discovery and development in Brazil: targeted plant collection as a rational strategy to acquire candidate anti-cancer compounds. Oncologist 5:185–198

    Article  CAS  PubMed  Google Scholar 

  • Martinvalet D, Zhu P, Lieberman J (2005) Granzyme a induces caspase-independent mitochondrial damage, a required first step for apoptosis. Immunity 22:355–370

    Article  CAS  PubMed  Google Scholar 

  • Mayer A, Gustafson KR (2003) Marine pharmacology in 2000: antitumor and cytotoxic compounds. Int J Cancer 105:291–299

    Article  CAS  PubMed  Google Scholar 

  • McCain J (2013) The MAPK (ERK) pathway: investigational combinations for the treatment of BRAF-mutated metastatic melanoma. PT 38:96–108

    Google Scholar 

  • Millimouno FM, Dong J, Yang L, Li J, Li X (2014) Targeting apoptosis pathways in cancer and perspectives with natural compounds from mother nature. Cancer Prev Res 7:1081–1107

    Article  CAS  Google Scholar 

  • Nawarak J, Huang-Liu R, Kao SH, Liao HH, Sinchaikul S, Chen ST, Cheng SL (2009) Proteomics analysis of A375 human malignant melanoma cells in response to arbutin treatment. Biochim Biophys Acta Proteins Proteomics 1794:159–167

    Article  CAS  Google Scholar 

  • Norhaizan ME, Ng SK, Norashareena MS, Abdah MA (2011) Antioxidant and cytotoxicity effect of rice bran phytic acid as an anticancer agent on ovarian, breast and liver cancer cell lines. Malays J Nutr 17:367–375

    PubMed  CAS  Google Scholar 

  • Oon SF, Nallappan M, Tee TT, Shohaimi S, Kassim NK, Sa’ariwijaya MSF, Cheah YH (2015) Xanthorrhizol: a review of its pharmacological activities and anticancer properties. Cancer Cell Int 15:100. https://doi.org/10.1186/s12935-015-0255-4

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Pai SG, Carneiro BA, Mota JM, Costa R, Leite CA, Barroso-Sousa R, Kaplan JB, Chae YK, Giles FJ (2017) Wnt/beta-catenin pathway: modulating anticancer immune response. J Hematol Oncol 10:101. https://doi.org/10.1186/s13045-017-0471-6

    Article  PubMed  PubMed Central  Google Scholar 

  • Pandey G, Madhuri S (2009) Some medicinal plants as natural anticancer agents. Pharmacogn Rev 3:259–263

    Google Scholar 

  • Peng F, Du Q, Peng C, Wang N, Tang H, Xie X, Shen J, Chen J (2015) A review: the pharmacology of isoliquiritigenin. Phytother Res 29:969–977

    Article  CAS  PubMed  Google Scholar 

  • Pflaum J, Schlosser S, Müller M (2014) p53 family and cellular stress responses in cancer. Front Oncol 4:285. https://doi.org/10.3389/fonc.2014.00285

    Article  PubMed  PubMed Central  Google Scholar 

  • Pouysségur J, Dayan F, Mazure NM (2006) Hypoxia signalling in cancer and approaches to enforce tumour regression. Nature 441:437–443

    Article  CAS  PubMed  Google Scholar 

  • Pradheepkumar CP, Shanmugam G (1999) Anticancer potential of cleistanthin a isolated from the tropical plant Cleistanthus collinus. Oncol Res 11:225–232

    PubMed  CAS  Google Scholar 

  • Prakash OM, Kumar A, Kumar P (2013) Anticancer potential of plants and natural products: a review. Am J Pharmacol Sci 1:104–115

    Google Scholar 

  • Proskuryakov SY, Gabai VL (2010) Mechanisms of tumor cell necrosis. Curr Pharm Des 16:56–68

    Article  CAS  PubMed  Google Scholar 

  • Rahman HS (2016) Natural products for cancer therapy. Dual Diagn Open Acc 1:15. https://doi.org/10.21767/2472-5048.100015

    Article  Google Scholar 

  • Rahman MM, Khan MA (2013) Anticancer potential of South Asian plants. Nat Prod Bioprospect 3:74–88

    Article  CAS  PubMed Central  Google Scholar 

  • Rajesh E, Sankari LS, Malathi L, Krupaa JR (2015) Naturally occurring products in cancer therapy. J Pharm Bioallied Sci 7:181–183

    Article  CAS  Google Scholar 

  • Rajkumar T (2001) Growth factors and growth factor receptors in cancer. Curr Sci 81:535–541

    CAS  Google Scholar 

  • Ran XK, Wang XT, Liu PP, Chi YX, Wang BJ, Dou DQ, Kang TG, Xiong W (2013) Cytotoxic constituents from the leaves of Broussonetia papyrifera. Chin J Nat Med 11:269–273

    PubMed  CAS  Google Scholar 

  • Reader J, Holt D, Fulton A (2011) Prostaglandin E2 EP receptors as therapeutic targets in breast cancer. Cancer Metastasis Rev 30:449–463

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Reddy L, Odhav B, Bhoola KD (2003) Natural products for cancer prevention: a global perspective. Pharmacol Ther 99:1–13

    Article  CAS  PubMed  Google Scholar 

  • Rimkus TK, Carpenter RL, Qasem S, Chan M, Lo HW (2016) Targeting the sonic hedgehog signaling pathway: review of smoothened and GLI inhibitors. Cancers 8:22. https://doi.org/10.3390/cancers8020022

    Article  PubMed Central  CAS  Google Scholar 

  • Samarghandian S, Afshari JT, Davoodi S (2011) Suppression of pulmonary tumor promotion and induction of apoptosis by Crocus sativus L. extraction. Appl Biochem Biotechnol 164:238–247

    Article  CAS  PubMed  Google Scholar 

  • Saraiva L, Fresco P, Pinto E, Portugal H, Gonçalves J (2001) Differential activation by Daphnetoxin and Mezerein of PKC-Isotypes alpha, beta I, delta and zeta. Planta Med 67:787–790

    Article  CAS  PubMed  Google Scholar 

  • Solowey E, Lichtenstein M, Sallon S, Paavilainen H, Solowey E, Lorberboum-Galski H (2014) Evaluating medicinal plants for anticancer activity. Scientific World J 2014:721402. https://doi.org/10.1155/2014/721402

    Article  Google Scholar 

  • Song Z, Xu X (2014) Advanced research on anti-tumor effects of amygdalin. J Cancer Res Ther 10:3–7

    Article  CAS  PubMed  Google Scholar 

  • Suthar AC, Banavalikar MM, Biyani MK (2001) Pharmacological activities of genistein, an isoflavone from soy (Glycine max): part I-anti-cancer activity. Indian J Exp Biol 39:511–519

    PubMed  CAS  Google Scholar 

  • Takebayashi Y, Pourquier P, Zimonjic DB, Nakayama K, Emmert S, Ueda T, Urasaki Y, Kanzaki A, Akiyama SI, Popescu N, Kraemer KH (2001) Antiproliferative activity of ecteinascidin 743 is dependent upon transcription-coupled nucleotide-excision repair. Nature Med 7:961–966

    Article  CAS  PubMed  Google Scholar 

  • Torre LA, Bray F, Siegel RL, Ferlay J, Lortet-Tieulent J, Jemal A (2015) Global cancer statistics, 2012. CA Cancer J Clin 65:87–108

    Article  PubMed  Google Scholar 

  • Wajant H (2002) The Fas signaling pathway: more than a paradigm. Sci 296:1635–1636

    Article  CAS  Google Scholar 

  • Wang H, Oo Khor T, Shu L, Su ZY, Fuentes F, Lee JH, Tony Kong AN (2012) Plants vs. cancer: a review on natural phytochemicals in preventing and treating cancers and their druggability. Anti Cancer Agents Med Chem 12:1281–1305

    Article  CAS  Google Scholar 

  • Wipf P, Reeves JT, Day BW (2004) Chemistry and biology of curacin a. Curr Pharm Des 10:1417–1437

    Article  CAS  PubMed  Google Scholar 

  • Wong RS (2011) Apoptosis in cancer: from pathogenesis to treatment. J Exp Clin Cancer Res 30:87. https://doi.org/10.1186/1756-9966-30-87

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Xiong A, Yang Z, Shen Y, Zhou J, Shen Q (2014) Transcription factor STAT3 as a novel molecular target for cancer prevention. Cancers 6:926–957

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Yang JH, Kondratyuk TP, Jermihov KC, Marler LE, Qiu X, Choi Y, Cao H, Yu R, Sturdy M, Huang R, Liu Y (2011) Bioactive compounds from the fern Lepisorus contortus. J Nat Prod 74:129–136

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Yu SM, Hu DH, Zhang JJ (2015) Umbelliferone exhibits anticancer activity via the induction of apoptosis and cell cycle arrest in HepG2 hepatocellular carcinoma cells. Mol Med Rep 12:3869–3873

    Article  CAS  PubMed  Google Scholar 

  • Zhang L, Wang H (2015) Multiple mechanisms of anticancer effects exerted by astaxanthin. Mar Drugs 13:4310–4330

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zhang LQ, Lv RW, Qu XD, Chen X J, Lu HS, Wang Y (2017) Aloesin suppresses cell growth and metastasis in ovarian cancer SKOV3 cells through the inhibition of the MAPK signaling pathway. Anal Cell Pathol 2017:8158254. https://doi.org/10.1155/2017/8158254

    CAS  Google Scholar 

  • Zhou L, Feng Y, Jin Y, Liu X, Sui H, Chai N, Chen X, Liu N, Ji Q, Wang Y, Li Q (2014) Verbascoside promotes apoptosis by regulating HIPK2-p53 signaling in human colorectal cancer. BMC Cancer 14:747

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Radhakrishnan Narayanaswamy .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Narayanaswamy, R., Swamy, M.K. (2018). Elucidation of Mechanisms of Anticancer Plant Compounds Against the Tumor Cells. In: Akhtar, M., Swamy, M. (eds) Anticancer Plants: Mechanisms and Molecular Interactions. Springer, Singapore. https://doi.org/10.1007/978-981-10-8417-1_4

Download citation

Publish with us

Policies and ethics