Skip to main content

Plant miRNAs and Phytomolecules As Anticancer Therapeutics

  • Chapter
  • First Online:
Anticancer Plants: Mechanisms and Molecular Interactions

Abstract

In Indian health-care system, plants are used as a source of medicine to cure various ailments and also provide high quality of food and raw materials for human beings. In due course of time, gradually the expertise developed in selective uses of different plants and their secondary metabolites in treating certain disease conditions. Many such plant parts are now used as alternative medicines for treating diverse forms of diseases including cancer. Research is going on to identify active component/phytomolecules present in plant extracts to cure certain ailments and to be used as therapeutics. In this chapter, we are emphasizing on the role of different plants and their phytomolecules in the treatment of cancer with a detailed overview, and the specific plant parts are discussed in the later part of this chapter. As a second line of thought, authors believe that one of the major genetic components, i.e., plant microRNA, has been overlooked since years and may prove to play a major role as a therapeutic molecule. MicroRNAs are attributed to control gene expression at a very fine level both transcriptionally and posttranscriptionally. Studies have indicated that aberrant expression of several genes leads to cancer and damages normal cellular processes related to many human diseases. Plant miRNAs may play a major role in regulating such gene expression, thereby impacting the development of physiology and development of the human body. Interestingly, many reports are suggesting the possible cross-kingdom regulation of mammalian gene expression by plant-derived microRNAs. The possibility that food-derived miRNA can inhibit cancer growth in mammals is appealing as plant-derived microRNAs are reported to pass through the gastrointestinal tract and are found in human serum regulating the expression of endogenous mRNA. The present chapter highlights the plants and their derived phytomolecules having anticancer properties and also explored the potential of miRNA as a new therapeutic in the field of cancer biology.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Aggarwal BB, Shishodia S (2006) Molecular targets of dietary agents for prevention and therapy of cancer. Biochem Pharmacol 71:1397–1421

    Article  CAS  PubMed  Google Scholar 

  • Ahmad A, Sarkar SH, Bitar B, Ali S, Aboukameel A, Sethi S, Li Y, Bao B, Kong D, Banerjee S, Padhye SB, Sarkar FH (2012) Garcinol regulates EMT and Wnt signaling pathways in vitro and in vivo leading to anticancer activity against breast cancer cells. Mol Cancer Ther 11:2193–2201

    Article  CAS  PubMed  Google Scholar 

  • Akhtar MS, Birhanu G, Demisse S (2014a) Antimicrobial activity of Piper nigrum L. and Cassia didymobotyra L. leaf extract on selected food borne pathogens. Asian Pac J Trop Dis 4:S911–S919

    Article  Google Scholar 

  • Akhtar MS, Degaga B, Azam T (2014b) Antimicrobial activity of essential oils extracted from medicinal plants against the pathogenic microorganisms: a review. Issues Biol Sci Pharm Res 2:1–7

    Google Scholar 

  • Alvarez-Garcia I, Miska EA (2005) MicroRNA functions in animal development and human disease. Development 132:4653–4662

    Article  CAS  PubMed  Google Scholar 

  • Aryal R, Yang X, Yu Q, Sunkar R, Li L, Ming R (2012) Asymmetric purine-pyrimidine distribution in cellular small RNA population of papaya. BMC Genomics 13:682. https://doi.org/10.1186/1471-2164-13-682

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Banerjee N, Talcott S, Safe S, Martens-Talcott SU (2012) Cytotoxicity of pomegranate polyphenolics in breast cancer cells in vitro and in vivo: potential role of miRNA-27a and miRNA-155 in cell survival and inflammation. Breast Cancer Res Treat 136:21–34

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bushati N, Cohen SM (2007) MicroRNA functions. Annu Rev Cell Dev Biol 23:175–205

    Article  CAS  PubMed  Google Scholar 

  • Chin AR, Fong MY, Somlo G, Wu J, Swiderski P, Wu X, Wang SE (2016) Cross-kingdom inhibition of breast cancer growth by plant miR159. Cell Res 26:217–228

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Coseri S (2009) Natural products and their analogues as efficient anticancer drugs. Med Chem 9:560–571

    CAS  Google Scholar 

  • Cragg GM, Newman DJ (2005) Plants as a source of anticancer agents. J Ethanopharmacol 100:72–79

    Article  CAS  Google Scholar 

  • Del Follo-Martinez A, Banerjee N, Li X, Safe S, Martens-Talcott S (2013) Resveratrol and quercetin in combination have anticancer activity in colon cancer cells and repress oncogenic microRNA-27a. Nutr Cancer 65:494–504

    Article  CAS  PubMed  Google Scholar 

  • Dhar S, Hicks C, Levenson AS (2011) Resveratrol and prostate cancer: promising role for microRNAs. Mol Nutr Food Res 55:1219–1229

    Article  CAS  PubMed  Google Scholar 

  • Dong Z, Han MH, Fedoroff N (2008) The RNA-binding proteins HYL1 and SE promote accurate in vitro processing of pri-miRNA by DCL1. Proc Natl Acad Sci U S A 105:9970–9975

    Article  Google Scholar 

  • Dugas DV, Bartel B (2004) MicroRNA regulation of gene expression in plants. Curr Opin Plant Biol 7:512–520

    Article  CAS  PubMed  Google Scholar 

  • Duursma AM, Kedde M, Schrier M, Ie Sage C, Agami R (2008) miR 148 targets human DNMT3b protein coding region. RNA 14:872–877

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Friedman RC, Farh KK, Burge CB, Bartel DP (2009) Most mammalian mRNAs are conserved targets of microRNAs. Genome Res 19:92–105

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Goldie JH (2001) Drug resistance in cancer: a perspective. Cancer Metastasis Rev 20:63–68

    Article  CAS  PubMed  Google Scholar 

  • Gupta SC, Kim JH, Prasad S, Aggarwal BB (2010) Regulation of survival, proliferation, invasion angiogenesis and metastasis of tumor cells through modulation of inflammatory pathways by nutraceuticals. Cancer Metastais Rev 29:405–434

    Article  CAS  Google Scholar 

  • Haggar FA, Boushey RP (2009) Colorectal cancer epidemiology: incidence, mortality, survival and risk factors. Clin Colon Rectal Surg 22:191–197

    Article  PubMed  PubMed Central  Google Scholar 

  • Itokawa H, Ibraheim ZZ, Ya FQ, Takeya K (1993) Anthraquinones, naphthohydroquinone dimmers from Rubia cordifolia and their cytotoxic activity. Chem Pharm Bull 41:1869–1872

    Article  CAS  Google Scholar 

  • Jia L, Zhang D, Xiang Z, He N (2015) Nonfunctional ingestion of plant miRNAs in silkworm revealed by digital droplet PCR and transcriptome analysis. Sci Rep 5:12290. https://doi.org/10.1038/srep12290

    Article  PubMed  PubMed Central  Google Scholar 

  • Karunagaran D, Joseph J, Santhosh Kumar TR (2007) Cell growth regulation. In: Aggarwal BB, Surh YJ, Sishodia S (eds) The molecular targets and therapeutic uses of Curcumin in health and disease. Adv Exp Med Biol 595:245–268

    Google Scholar 

  • Kharb M, Jat RK, Gupta A (2012) A review on medicinal plants used as a source of anticancer agents. Int J Drug Res Technol 2:177–183

    Google Scholar 

  • Kim S, Yang JY, Xu J (2008) Two Cap-Binding Proteins CBP20 and CBP80 are involved in processing primary microRNAs. Plant Cell Physiol 49:1634–1644

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kingston DGI (2005) Taxol and its analogs. In: Cragg GM, Kingston DGI, Newman DJ (eds) Anticancer agents from natural products. Brunner-Routledge Psycology Press/Taylor and Francis Group, Boca Raton

    Chapter  Google Scholar 

  • Kosaka N, Izumi H, Sekine K, Ochiya T (2010) microRNA as a new immune-regulatory agent in breast milk. Silence 1:7. https://doi.org/10.1186/1758-907X-1-7

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Kruszka K, Pieczynski M, Windels D, Bielewicz D, Jarmolowski A, Szweykowska-Kulinska Z, Vazquez F (2012) Role of microRNAs and other sRNAs of plants in their changing environments. J Plant Physiol 169:1664–1672

    Article  CAS  PubMed  Google Scholar 

  • Lam TK, Shao S, Zhao Y, Marincola FM, Pesatori AC, Bertazzi PA, Caporaso NE, Wang E, Landi MT (2012) Influence of quercetin-rich food intake on microRNA expression in lung cancer tissues. Cancer Epidemiol Biomark Prev 21:2176–2184

    Article  CAS  Google Scholar 

  • Lam JK, Chow MY, Zhang Y, Leung SW (2015) siRNA versus miRNA as therapeutics for gene silencing. Mol Ther Nucleic Acids 4:e252

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lee KH, Xiao Z (2005) Podophyllotoxins and analogs. In: Cragg GM, Kingston DGI, Newman DJ (eds) Anticancer agents from natural products. Brunner-Routledge Psychology Press/Taylor and Francis Group, Boca Raton

    Google Scholar 

  • Lee RC, Feinbaum RL, Ambros V (1993) The C. elegans heterochronic gene lin-4 encodes small RNAs with antisense complementarity to lin-14. Cell 75:843–854

    Article  CAS  PubMed  Google Scholar 

  • Li Y, Kong D, Wang Z, Sarkar FH (2010) Regulation of microRNAs by natural agents: an emerging field in chemoprevention and chemotherapy research. Pharm Res 27:1027–1041

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Liang G, Zhu Y, Sun B, Shao Y (2014) Assessing the survival of exogenous plant microRNA in mice. Food Sci Nutr 2:380–388

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Liang H, Zhang S, Fu Z, Wang Y (2015) Effective detection and quantification of dietetically absorbed plant microRNAs in human plasma. J Nutr Biochem 26:505–512

    Article  CAS  PubMed  Google Scholar 

  • Liu C, Axtell MJ, Fedoroff NV (2012) The helicase and RNAseIIIa domains of Arabidopsis Dicer-Like 1 modulate catalytic parameters during microRNA biogenesis. Plant Physiol 159:748–758

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lobbes D, Rallapalli G, Schmidt DD, Martin C, Clarke J (2006) SERRATE: a new player on the plant microRNA scene. EMBO Rep 7:1052–1058

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Luo Y, Wang P, Wang X, Wang Y, Mu Z, Li Q, Fu Y, Xiao J, Li G, Ma Y, Gu Y, Jin L, Ma J, Tang Q, Jiang A, Li X, Li M (2017) Detection of dietetically absorbed maize-derived microRNAs in pigs. Sci Rep 7:645. https://doi.org/10.1038/s41598-017-00488-y

    Article  PubMed  PubMed Central  Google Scholar 

  • Mahima RA, Deb R, Latheef SK, Abdul Samad H, Tiwari R, Verma AK, Kumar A, Dhama K (2012) Immunomodulatory and therapeutic potentials of herbal, traditional/indigenous and ethnoveterinary medicines. Pak J Biol Sci 15:754–774

    Article  CAS  PubMed  Google Scholar 

  • Martens-Talcott SU, Noratto GD, Li X, Angel-Morales G, Bertoldi MC, Safe S (2013) Betulinic acid decreases ER-negative breast cancer cell growth in vitro and in vivo: role of sp transcription factors and microRNA-27a:ZBTB10. Mol Carcinog 52:591–602

    Article  CAS  Google Scholar 

  • Miska EA (2005) How microRNAs control cell division, differentiation and death. Curr Opin Genet Dev 15:563–568

    Article  CAS  PubMed  Google Scholar 

  • Pandey G, Sharma M (2006) Autochthonous herbal products in the treatment of cancer. Phytomedica 7:99–104

    Google Scholar 

  • Prakash OM, Amit K, Pawan K, Ajeet A (2013) Anticancer potential of plants and natural products: a review. Am J Pharm Sci 1:104–115

    Google Scholar 

  • Rahier NJ, Thomas CJ, Hecht SM (2005) Camptothecin and its analogs. In: Cragg GM, Kingston DGI, Newman DJ (eds) Anticancer agents from natural products. Brunner-Routledge Psycology Press/Taylor and Francis Group, Boca Raton

    Google Scholar 

  • Reinhart BJ, Weinstein EG, Rhoades MW, Bartel B, Bartel DP (2002) MicroRNAs in plants. Genes Dev 16:1616–1626

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Rocha A, Wang L, Penichet M, Martins-Green M (2012) Pomegranate juice and specific components inhibit cell and molecular processes critical for metastasis of breast cancer. Breast Cancer Res Treat 136:647–658

    Article  CAS  PubMed  Google Scholar 

  • Rooij EV, Kauppinen S (2014) Development of microRNA therapeutics is coming of age. EMBO Mol Med 6:851–864

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sarangi MK, Padhi S (2014) Plants with potential anticancer activities- a review. Int J Phytomed 6:1–15

    Google Scholar 

  • Saxena S, Kumar A, Babu SG (2014) PLANT miRNAs: key players in inter-kingdom and intra-kingdom gene regulation. Int J Pharma Bio Sci 5:374–389

    Google Scholar 

  • Schmidt MF (2014) Drug target miRNAs: changes and challenges. Trends Biotechnol 32:578–585

    Article  CAS  PubMed  Google Scholar 

  • Siegel RL, Miller KD, Jemal A (2016) Cancer statistics. CA Cancer J Clin 66:7–30

    Article  PubMed  Google Scholar 

  • Sivalokanathan S, Ilayaraja M, Balasubramanian MP (2005) Efficacy of Terminalia arjuna (Roxb.) on N-nitrosodiethylamine induced hepatocellular carcinoma in rats. Indian J Exp Biol 43:264–267

    PubMed  CAS  Google Scholar 

  • Sunkar R, Li YF, Jagadeeswaran G (2012) Functions of microRNAs in plant stress responses. Trends Plant Sci 17:196–203

    Article  CAS  PubMed  Google Scholar 

  • Swamy MK, Akhtar MS, Sinniah UR (2016) Antimicrobial properties of plant essential oils against human pathogens and their mode of action: an updated review. Evidence-Based Compl Altern Med 2016:3012462. https://doi.org/10.1155/2016/3012462

    Article  Google Scholar 

  • Tili E, Michaille JJ, Alder H, Volinia S, Delmas D, Latruffe N, Croce CM (2010) Resveratrol modulates the levels of microRNAs targeting genes encoding tumor-suppressors and effectors of TGFβ in signaling pathway in SW480 cells. Biochem Pharmacol 80:2057–2065

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Tsang WP, Kwok TT (2010) Epigallocatechin gallate up-regulation of miR-16 and induction of apoptosis in human cancer cells. J Nutr Biochem 21:140–146

    Article  CAS  PubMed  Google Scholar 

  • Wang J, Li Y, Wang X, Jiang C (2012a) Ursolic acid inhibits proliferation and induces apoptosis in human Glioblastoma cell lines U251 by suppressing TGF-β1/miR-21/PDCD4 pathway. Basic Clin Pharmacol Toxicol 111:106–112

    PubMed  CAS  Google Scholar 

  • Wang L, Ho J, Glackin C, Martins-Green M (2012b) Specific pomegranate juice components as potential inhibitors of prostate cancer metastasis. Transl Oncol 5:344–355

    Article  PubMed  PubMed Central  Google Scholar 

  • Wightman B, Ha I, Ruvkun G (1993) Posttranscriptional regulation of the heterochronic gene lin-14 by lin-4 mediates temporal pattern formation in C. elegans. Cell 75:855–862

    Article  CAS  PubMed  Google Scholar 

  • Witwer KW (2012) XenomiRs and miRNA homeostasis in health and disease: evidence that diet and dietary miRNAs directly and indirectly influence circulating miRNA profiles. RNA Biol 9:1147–1154

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Witwer KW, McAlexander MA, Queen SE, Adams RJ (2013) Real-time quantitative PCR and droplet digital PCR for plant miRNAs in mammalian blood provide little evidence for general uptake of dietary miRNAs. RNA Biol 10:1080–1086

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Xiang S, Fruehauf J, Li CJ (2006) Short hairpin RNA-expressing bacteria elicit RNA interference in mammals. Nat Biotechnol 24:697–702

    Article  CAS  PubMed  Google Scholar 

  • Xie K, Khanna K, Ruan S (2010) Expression of microRNAs and its regulation in plants. Semin Cell Dev Biol 21:790–797

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Yu B, Bi L, Zheng B, Ji L, Chevalier D, Agarwal M, Ramachandran V, Li W, Lagrange T, Walker JC, Chen X (2008) The FHA domain proteins DAWDLE in Arabidopsis and SNIP1 in humans act in small RNA biogenesis. Proc Natl Acad Sci U S A 105:10073–10078

    Article  PubMed  PubMed Central  Google Scholar 

  • Zhang B, Wang Q, Pan X (2007) MicroRNAs and their regulatory roles in animals and plants. J Cell Physiol 210:279–289

    Article  CAS  PubMed  Google Scholar 

  • Zhang L, Hou D, Chen X, Li D, Zhu L, Zhang Y, Li J, Bian Z, Liang X, Cai X, Yin Y, Wang C, Zhang T, Zhu D, Zhang D, Xu J, Chen Q, Ba Y, Liu J, Wang Q, Chen J, Wang J, Wang M, Zhang Q, Zhang J, Zen K, Zhang C (2012) Exogenous plant MiR168a specifically targets mammalian DLRAP1: evidence of cross-kingdom regulation by microRNA. Cell Res 22:107–126

    Article  CAS  PubMed  Google Scholar 

  • Zhou DH, Wang X, Feng Q (2014) EGCG enhances the efficacy of cisplatin by downregulating hsa-miR-98-5p in NSCLC A549 cells. Nutr Cancer 66:636–644

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sangeeta Saxena .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Shukla, N., Shukla, V., Saxena, S. (2018). Plant miRNAs and Phytomolecules As Anticancer Therapeutics. In: Akhtar, M., Swamy, M. (eds) Anticancer Plants: Mechanisms and Molecular Interactions. Springer, Singapore. https://doi.org/10.1007/978-981-10-8417-1_2

Download citation

Publish with us

Policies and ethics