Skip to main content

Computational Fluid Dynamics Application in Reducing Complications of Patent Ductus Arteriosus Stenting

  • Chapter
  • First Online:
  • 722 Accesses

Part of the book series: Series in BioEngineering ((SERBIOENG))

Abstract

In some cases, especially in neonates, ductus arteriosus needs to remain patent for multiple medical purposes. In order to achieve this, current practice involves inserting stent in the ductus arteriosus. This condition is called patent ductus arteriosus (PDA). For this process, stents such as coronary stent are commonly used due to unavailability of customized stent for PDA in neonates. The usage of coronary stent however, opens the possibility of acute stent thrombosis and other complications. Therefore, there is a high need of special and customized stents to be used for PDA in neonates. This customized stent has to be able to sustain the hemodynamic effects of the flow inside the PDA. The stent has to be able to support the ductus wall compression and contraction due to arterial compliance. What is more important is that the stent must properly fit into various morphologies of the ductus. There are several different morphologies of PDA identified and the stents must be able to sustain the various shapes and tortuosity. In addition, the stent has to be tested for biocompatibility and practicality. Therefore, the customized design of the PDA stents can be derived from the concept of coronary stents and in compliance with all the mentioned characteristics. However, further analysis has to be completed ensure proper compatibility with neonates. In conclusion, the biggest challenge is to customize a stent that fits all the PDA morphologies.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD   199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. Taib, I.: Improvement of Haemodynamic Stent Strut Configuration for Patent Ductus Arteriosus. Universiti Teknologi Malaysia (2016)

    Google Scholar 

  2. Schneider, D.J., Moore, J.W.: Patent ductus arteriosus. Circulation 114, 1873–1882 (2006). https://doi.org/10.1161/CIRCULATIONAHA.105.592063

    Article  Google Scholar 

  3. Schneider, M., Zartner, P., Sidiropoulos, A., et al.: Stent implantation of the arterial duct in newborns with duct-dependent circulation. Eur. Heart J. 19, 1401–1409 (1998)

    Article  Google Scholar 

  4. Crossley, K.J., Allison, B.J., Polglase, G.R., et al.: Dynamic changes in the direction of blood flow through the ductus arteriosus at birth. J. Physiol. 587, 4695–4704 (2009). https://doi.org/10.1113/jphysiol.2009.174870

    Article  Google Scholar 

  5. LeRoy, S.: Patent Ductus Arteriosus. CS Mott Children’s Hospital: University of Michigan Health System (2012). http://www.mottchildren.org/medical-services/ped-heart/conditions/patent-ductus-arteriosus. Accessed 17 Aug 2014

  6. Bakhshali, M.A., Mafi, M., Daneshvar, S.: Mathematical modelling of the patent ductus arteriosus (PDA). Math. Comput. Model Dyn. Syst. 19, 238–249 (2013). https://doi.org/10.1080/13873954.2012.727187

    Article  MathSciNet  MATH  Google Scholar 

  7. Murphy, P.J.: The fetal circulation. Contin. Educ. Anaesth. Crit. Care Pain 5, 107–112 (2005). https://doi.org/10.1093/bjaceaccp/mki030

    Article  Google Scholar 

  8. Alwi, M.: Stenting the ductus arteriosus: case selection, technique and possible complications. Ann. Pediatr. Cardiol. 1, 38–45 (2008). https://doi.org/10.4103/0974-2069.41054

    Article  Google Scholar 

  9. Boshoff, D.E., Michel-behnke, I., Schranz, D.: Stenting the neonatal arterial duct. Expert Rev. Cardiovasc. Ther. 5, 893–901 (2007)

    Article  Google Scholar 

  10. Alwi, M.: Stenting the patent ductus arteriosus in duct-dependent pulmonary circulation: techniques, complications and follow-up issues. Future Cardiol. 8, 237–250 (2012). https://doi.org/10.2217/fca.12.4

    Article  Google Scholar 

  11. Vida, V.L., Speggiorin, S., Maschietto, N., et al.: Cardiac operations after patent ductus arteriosus stenting in duct-dependent pulmonary circulation. Ann. Thorac. Surg. 90, 605–609 (2010). https://doi.org/10.1016/j.athoracsur.2010.04.007

    Article  Google Scholar 

  12. Gewillig, M., Boshoff, D.E., Dens, J., et al.: Stenting the neonatal arterial duct in duct-dependent pulmonary circulation: new techniques, better results. J. Am. Coll. Cardiol. 43, 107–112 (2004). https://doi.org/10.1016/j.jacc.2003.08.029

    Article  Google Scholar 

  13. Alwi, M., Choo, K.K., Latiff, H.A., et al.: Initial results and medium-term follow-up of stent implantation of patent ductus arteriosus in duct-dependent pulmonary circulation. J. Am. Coll. Cardiol. 44, 438–445 (2004). https://doi.org/10.1016/j.jacc.2004.03.066

    Article  Google Scholar 

  14. Matter, M., Almarsafawey, H., Hafez, M., et al.: Patent ductus arteriosus stenting in complex congenital heart disease: early and midterm results for a single-center experience at children hospital, Mansoura. Egypt. Pediatr. Cardiol. 34, 1100–1106 (2013). https://doi.org/10.1007/s00246-012-0608-x

    Article  Google Scholar 

  15. Feltes, T.F., Bacha, E., Beekman, R.H., et al.: Indications for cardiac catheterization and intervention in pediatric cardiac disease: a scientific statement from the American Heart Association. Circulation 123, 2607–2652 (2011). https://doi.org/10.1161/CIR.0b013e31821b1f10

    Article  Google Scholar 

  16. Odemis, E., Haydin, S., Guzeltas, A., et al.: Stent implantation in the arterial duct of the newborn with duct-dependent pulmonary circulation: single centre experience from Turkey. Eur. J. Cardio-thorac. Surg. 42, 57–60 (2012). https://doi.org/10.1093/ejcts/ezr258

    Article  Google Scholar 

  17. Alwi, M., Mood, M.C.: Stenting of lesions in patent ductus arteriosus with duct-dependent pulmonary blood flow. Interv. Cardiol. Clin. 2, 93–113 (2013). https://doi.org/10.1016/j.iccl.2012.09.011

    Article  Google Scholar 

  18. Alwi, M.: Patent ductus arteriosus stenting—problems, complications and technical consideration. Congenit. Cardiol. Today 3, 1–16 (2005)

    Google Scholar 

  19. Krichenko, A., Benson, L.N., Burrows, P., et al.: Angiographic classification of the isolated, persistently patent ductus arteriosus and implications for percutaneous catheter occlusion. Am. J. Cardiol. 63, 877–880 (1989). https://doi.org/10.1016/0002-9149(89)90064-7

    Article  Google Scholar 

  20. Alwi, M.: Patent Ductus arteriosus stenting: problems, complications and technical consideration. Neonatol. Today 6 (2011)

    Google Scholar 

  21. Murphy, J., Boyle, F.: Predicting neointimal hyperplasia in stented arteries using time-dependant computational fluid dynamics: a review. Comput. Biol. Med. 40, 408–418 (2010). https://doi.org/10.1016/j.compbiomed.2010.02.005

    Article  Google Scholar 

  22. Gibbs, J.L., Uzun, O., Blackburn, M.E., et al.: Fate of the stented arterial duct. Circulation 99, 2621–2625 (1999). https://doi.org/10.1161/01.CIR.99.20.2621

    Article  Google Scholar 

  23. Alwi, M.: Core curriculum management algorithm in pulmonary atresia with intact ventricular septum. Catheter. Cardiovasc. Interv. 67, 679–686 (2006). https://doi.org/10.1002/cci.20672

    Article  Google Scholar 

  24. Taib, I., Kadir, M.R.A., Azis, M.H.S.A., et al.: Analysis of hemodynamic differences for stenting patent ductus arteriosus. J. Med. Imaging Heal Inform. 3, 555–560 (2013). https://doi.org/10.1166/jmihi.2013.1197

    Article  Google Scholar 

  25. Wernick, M.H., Jeremias, A., Carrozza, J.P.: Drug-eluting stents and stent thrombosis: a cause for concern? Coron. Artery Dis. 17, 661–665 (2006). https://doi.org/10.1097/MCA.0b013e32801122b1

    Article  Google Scholar 

  26. He, Y., Duraiswamy, N., Frank, A.O., Moore, J.E.: Blood flow in stented arteries: a parametric comparison of strut design patterns in three dimensions. J. Biomech. Eng. 127, 637–647 (2005). https://doi.org/10.1115/1.1934122

    Article  Google Scholar 

  27. LaDisa, J.F., Olson, L.E, Guler, I., et al.: Stent design properties and deployment ratio influence indexes of wall shear stress: a three-dimensional computational fluid dynamics investigation within a normal artery. J. Appl. Physiol. 97, 424–30; discussion 416 (2004). https://doi.org/10.1152/japplphysiol.01329.2003

    Article  Google Scholar 

  28. Glor, F.P., Ariff, B., Hughes, A.D., et al.: Image-based carotid flow reconstruction: a comparison between MRI and ultrasound. Physiol. Meas. 25, 1495–1509 (2004). https://doi.org/10.1088/0967-3334/25/6/014

    Article  Google Scholar 

  29. Caballero, A. D., Laín, S.: A review on computational fluid dynamics modelling in human thoracic aorta. Cardiovasc. Eng. Technol. 4, 103–130 (2013). https://doi.org/10.1007/s13239-013-0146-6

    Article  Google Scholar 

  30. Rathakrishnan, E.: Instrumentation, Measurements, and Experiments in Fluids. CRC Press, Taylor & Francis Group (2016)

    Google Scholar 

  31. Gundert, T.J., Dholakia, R.J., McMahon, D., LaDisa, J.F.: Computational fluid dynamics evaluation of equivalency in hemodynamic alterations between driver, integrity, and similar stents implanted into an idealized coronary artery. J. Med. Device 7, 011004 (2013). https://doi.org/10.1115/1.4023413

    Article  Google Scholar 

  32. Alwi, M., Choo, K.K., Radzi, N.A.M., et al.: Concomitant stenting of the patent ductus arteriosus and radiofrequency valvotomy in pulmonary atresia with intact ventricular septum and intermediate right ventricle: early in-hospital and medium-term outcomes. J. Thorac. Cardiovasc. Surg. 141, 1355–1361 (2011). https://doi.org/10.1016/j.jtcvs.2010.08.085

    Article  Google Scholar 

  33. Balossino, R., Gervaso, F., Migliavacca, F., Dubini, G.: Effects of different stent designs on local hemodynamics in stented arteries. J. Biomech. 41, 1053–1061 (2008). https://doi.org/10.1016/j.jbiomech.2007.12.005

    Article  Google Scholar 

  34. Jiménez, J.M., Davies, P.F.: Hemodynamically driven stent strut design. Ann. Biomed. Eng. 37, 1483–1494 (2009). https://doi.org/10.1007/s10439-009-9719-9

    Article  Google Scholar 

  35. Duraiswamy, N., Schoephoerster, R.T., Moore Jr., J.E.: Comparison of near-wall hemodynamic parameters in stented artery models. J. Biomech. Eng. 131, 1–22 (2010). https://doi.org/10.1115/1.3118764.Comparison

    Article  Google Scholar 

  36. O’Brien, B., Carroll, W.: The evolution of cardiovascular stent materials and surfaces in response to clinical drivers: a review. Acta Biomater. 5, 945–958 (2009). https://doi.org/10.1016/j.actbio.2008.11.012

    Article  Google Scholar 

  37. Nakazawa, G., Yazdani, S.K., Finn, A.V., et al.: Pathological findings at bifurcation lesions. The impact of flow distribution on atherosclerosis and arterial healing after stent implantation. J. Am. Coll. Cardiol. 55, 1679–1687 (2010). https://doi.org/10.1016/j.jacc.2010.01.021

    Article  Google Scholar 

  38. Kori, M.I., Osman, K., Taib, I.: Hemodynamic prediction in patent ductus arteriosus morphologies. APRN J. Eng. Appl. Sci. 12, 3156–3160 (2017)

    Google Scholar 

  39. Koskinas, K.C., Chatzizisis, Y.S., Antoniadis, A.P., Giannoglou, G.D.: Role of endothelial shear stress in stent restenosis and thrombosis: Pathophysiologic mechanisms and implications for clinical translation. J. Am. Coll. Cardiol. 59, 1337–1349 (2012). https://doi.org/10.1016/j.jacc.2011.10.903

    Article  Google Scholar 

  40. Pant, S., Bressloff, N.W., Forrester, A.I.J., Curzen, N.: The influence of strut-connectors in stented vessels: a comparison of pulsatile flow through five coronary stents. Ann. Biomed. Eng. 38, 1893–1907 (2010). https://doi.org/10.1007/s10439-010-9962-0

    Article  Google Scholar 

  41. Chiastra, C., Gallo, D., Tasso, P., et al.: Healthy and diseased coronary bifurcation geometries influence near-wall and intravascular flow: a computational exploration of the hemodynamic risk. J. Biomech. 58, 79–88 (2017). https://doi.org/10.1016/j.jbiomech.2017.04.016

    Article  Google Scholar 

Download references

Acknowledgments

The support of the University of Teknologi Malaysia, under the Ministry of Education Malaysia and IJN-UTM Cardiovascular Centre grant, led by Dr. Kahar Osman under grant number 4F240, 01G77, 01G17 and 4L638 are gratefully acknowledged.

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Kori, M.I., Osman, K., Khudzari, A.Z.M., Taib, I. (2020). Computational Fluid Dynamics Application in Reducing Complications of Patent Ductus Arteriosus Stenting. In: Dewi, D., Hau, Y., Khudzari, A., Muhamad, I., Supriyanto, E. (eds) Cardiovascular Engineering. Series in BioEngineering. Springer, Singapore. https://doi.org/10.1007/978-981-10-8405-8_9

Download citation

  • DOI: https://doi.org/10.1007/978-981-10-8405-8_9

  • Published:

  • Publisher Name: Springer, Singapore

  • Print ISBN: 978-981-10-8404-1

  • Online ISBN: 978-981-10-8405-8

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics