Skip to main content

Role of ACC Deaminase as a Stress Ameliorating Enzyme of Plant Growth-Promoting Rhizobacteria Useful in Stress Agriculture: A Review

Abstract

The crop production is inhibited by a large number of both biotic and abiotic stresses. These stresses include presence of toxic heavy metals, high salt, flood, drought, temperature, wounding, various pathogens, etc. The agricultural production was intensified by management of these stresses with increased use of chemicals, and it needs more attention for incoming population explosion. These chemical inputs caused several harmful effects on the environment and sustainable agriculture. It is ne3cessary to decrease dependence of chemical input for sustainable agriculture with a holistic approach and also essential for environmental protection. One such possible approach is the use of 1-aminocyclopropane-1-carboxylate (ACC) deaminase-producing plant growth-promoting rhizobacteria (PGPR) to protect the crop plants from the harmful effects of both biotic and abiotic stresses. The enzyme ACC deaminase (EC 4.1.99.4) regulates stress ethylene production by catalysing ACC into α-ketobutyrate and ammonia. Various research works have documented the application of ACC deaminase-producing PGPR under both normal and stressed conditions responsible for the increased growth, health and productivity of crop plant. These beneficial rhizobacteria may decrease the dependence on agrochemicals (fertilizer and pesticides) to stabilize the agroecosystems and maintained sustainable agriculture. Different biochemical and biophysical properties of this enzyme and its regulation have been briefly described. This review also describes the role of ACC deaminase enzyme in plant growth and production by ameliorating different stress conditions including heavy metal, salinity, drought, flood, temperature, etc. Finally, the latest paradigms for useful application of ACC deaminase-containing plant growth-promoting rhizobacteria in different agroecosystems have been discussed comprehensively under stress conditions to highlight the recent scenario with the aim to develop future insights.

Keywords

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
EUR   29.95
Price includes VAT (France)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
EUR   128.39
Price includes VAT (France)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
EUR   163.51
Price includes VAT (France)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
EUR   232.09
Price includes VAT (France)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Abbreviations

ACC:

1-Aminocyclopropane-1-carboxylate

ACCD:

1-Aminocyclopropane-1-carboxylate deaminase

ARF:

Auxin response factor

IAA:

Indole-3-acetic acid

ISR:

Induce systemic resistance

PGPR:

Plant growth-promoting rhizobacteria

References

  • Aamir M, Aslam A, Khan YM, Jamshaid MU, Ahmad M, Asghar HN, Zahir ZA (2013) Co-inoculation with Rhizobium and plant growth promoting rhizobacteria (PGPR) for inducing salinity tolerance in mung bean under field condition of semi-arid climate. Asian J Agri Biol 1(1):17–22

    Google Scholar 

  • Abbaspoor A, Zabihi HR, Movafegh S, Asl MHA (2009) The efficiency of plant growth promoting Rhizobacteria (PGPR) on yield and yield components of two varieties of wheat in salinity condition. Am Eurasian J Sustain Agric 3(4):824–828

    Google Scholar 

  • Abeles FB, Morgan PW, Saltveit ME (1992) Regulation of ethylene production by internal, environmental and stress factors. In: Ethylene in plant biology, 2nd edn. Academic, San Diego, pp 56–119

    CrossRef  Google Scholar 

  • Achilea O, Fuchs Y, Chalutz E, Rot I (1985) The contribution of host and pathogen to ethylene biosynthesis in Penicillium digitatum-infected citrus fruit. Physiol. Plant Pathol 27:55–63

    CAS  Google Scholar 

  • Ahmad E, Khan Md S, Almas Z (2013) ACC deaminase producing Pseudomonas putida strain PSE3 and Rhizobium leguminosarum strain RP2 in synergism improves growth, nodulation and yield of pea grown in alluvial soils. Symbiosis 61:93–104

    CrossRef  CAS  Google Scholar 

  • Ahmad I, Akhtar MJ, Zahir ZA, Naveed M, Mitter B, Sessitsch A (2014) Cadmium-tolerant bacteria induce metal stress tolerance in cereals. Environ Sci Pollut Res 21:11054–11065

    CrossRef  CAS  Google Scholar 

  • Ahmad M, Nadeem SM, Naveed M, Zahir ZA (2016) Potassium-solubilizing bacteria and their application in agriculture. In: Meena VS, Maurya BR, Verma JP, Meena RS (eds) Potassium solubilizing microorganisms for sustainable agriculture. Springer, New Delhi, pp 293–313. https://doi.org/10.1007/978-81-322-2776-2_21

    CrossRef  Google Scholar 

  • Ahmadi N, Mibus H, Serek M (2009) Characterization of ethylene-induced organ abscission in F1 breeding lines of miniature roses (Rosa hybrida L.) Post Harvest Biol Technol 52:260–266

    CrossRef  CAS  Google Scholar 

  • Akhgar R, Arzanlou M, Bakker PAHM, Hamidpour M (2014) Characterization of 1-Aminocyclopropane-1-Carboxylate (ACC) deaminase-containing Pseudomonas spp. in the rhizosphere of salt-stressed canola. Pedosphere 24(4):461–468

    CrossRef  Google Scholar 

  • Akhtar S, Ali B (2011) Evaluation of rhizobacteria as non-rhizobial inoculants for mung beans. Aust J Crop Sci 5(13):1723–1729

    CAS  Google Scholar 

  • Ali S, Charles TC, Glick BR (2014a) Amelioration of high salinity stress damage by plant growth promoting bacterial endophytes that contain ACC deaminase. Plant Physio Bioche 80:160–167

    CrossRef  CAS  Google Scholar 

  • Ali SZ, Sandhya V, Rao LV (2014b) Isolation and characterization of drought-tolerant ACC deaminase and exopolysaccharide-producing fluorescent Pseudomonas sp. Ann Microbiol 64:493–502

    CrossRef  CAS  Google Scholar 

  • Apelbaum A, Yang SF (1981) Biosynthesis of stress ethylene induced by water deficit. Plant Physiol 68(3):594–596

    CrossRef  PubMed  PubMed Central  CAS  Google Scholar 

  • Arshad M, Frankenberger WT (2002) Ethylene: agricultural sources and applications. Kluwer Academic, New York. ISBN 0-306-46666-X, EUR 158/USD 145.0/GBP 98.00.plant sci 162(6), pp1020

    Google Scholar 

  • Arshad M, Shaharoona B, Mahmood T (2008) Inoculation with Pseudomonas spp. containing ACC-deaminase partially eliminates the effects of drought stress on growth, yield, and ripening of pea (Pisum sativum L.) Pedosphere 18(5):611–620

    CrossRef  Google Scholar 

  • Babalola OO (2010) Beneficial bacteria of agricultural importance. Biotechnol Lett 32:1559–1570

    CrossRef  PubMed  CAS  Google Scholar 

  • Babalola OO, Osir EO, Sanni AI, Odhiambo GD, Bulimo WD (2003) Amplification of 1-amino-cyclopropane-1-carboxylic acid (ACC) deaminase from plant growth promoting rhizobacteria in Striga-infested soil. Afri J Biotechnol 2:157–160

    CrossRef  CAS  Google Scholar 

  • Bahadur I, Meena VS, Kumar S (2014) Importance and application of potassic biofertilizer in Indian agriculture. Int Res J Biol Sci 3:80–85

    Google Scholar 

  • Bahadur I, Maurya BR, Kumar A, Meena VS, Raghuwanshi R (2016a) Towards the soil sustainability and potassium-solubilizing microorganisms. In: Meena VS, Maurya BR, Verma JP, Meena RS (eds) Potassium solubilizing microorganisms for sustainable agriculture. Springer, New Delhi, pp 225–266. https://doi.org/10.1007/978-81-322-2776-2_18

    CrossRef  Google Scholar 

  • Bahadur I, Maurya BR, Meena VS, Saha M, Kumar A, Aeron A (2016b) Mineral release dynamics of tricalcium phosphate and waste muscovite by mineral-solubilizing rhizobacteria isolated from indo-gangetic plain of India. Geomicrobiol J. https://doi.org/10.1080/01490451.2016.1219431

  • Bal HB, Nayak L, Das S, Adhya TK (2013) Isolation of ACC deaminase producing PGPR from rice rhizosphere and evaluating their plant growth promoting activity under salt stress. Plant Soil 366:93–105

    CrossRef  CAS  Google Scholar 

  • Bangash N, Khalidi A, Mahmood T, Siddique TM (2013) Screening rhizobacteria containing ACC deaminase for growth promotion of wheat under water stress. Pak J Bot 45(SI):91–96

    CAS  Google Scholar 

  • Barea JM, Pozo MJ, Azcon R, Azcon-Aguilar C (2005) Microbial co-operation in the rhizosphere. J Exp Bot 56(417):1761–1778

    CrossRef  PubMed  CAS  Google Scholar 

  • Barka EA, Nowak J, Clement C (2006) Enhancement of chilling resistance of inoculated grapevine plantlets with a plant growth-promoting rhizobacterium Burkholderia phytofirmans strain PsJN. Appl Env Microbiol 72:7246–7252

    CrossRef  CAS  Google Scholar 

  • Barnawal D, Bharti N, Maji D, Chanotiya CS, Kalra A (2014) ACC deaminase containing Arthrobacter protophormiae induces NaCl stress tolerance through reduced ACC oxidase activity and ethylene production resulting in improved nodulation and mycorrhization in Pisum sativum. J Plant Physiol 171(11):884–894

    CrossRef  PubMed  CAS  Google Scholar 

  • Barnawala D, Bhartia N, Majia D, Chanotiy CS, Kalra A (2012) 1-Aminocyclopropane1carboxylic acid (ACC) deaminase containing rhizobacteria protect Ocimum sanctum plants during waterlogging stress via reduced ethylene generation. Plant Physiol Biochem 58:227–235

    CrossRef  CAS  Google Scholar 

  • Belimov AA, Wenzel WW (2009) The role of rhizosphere microorganisms in heavy metal tolerance of higher plants. Asp Appl Biol 98:81–90

    Google Scholar 

  • Belimov AA, Safronova VI, Sergeyeva TA, Egorova TN, Matveyeva VA, Tsyganov VE, Borisov AY, Tikhonovich IA, Kluge C, Preisfeld A, Dietz KJ, Stepanok VV (2001) Characterization of plant growth promoting rhizobacteria isolated from polluted soils and containing 1-aminocyclopropane-1-carboxylate deaminase. Can J Microbiol 47:642–652

    CrossRef  PubMed  CAS  Google Scholar 

  • Belimov AA, Hontzeas N, Safronova VI, Demchinskaya SV, Piluzza G, Bullitta S, Glick BR (2005) Cadmium-tolerant plant growth-promoting bacteria associated with the roots of Indian mustard (Brassica juncea L. Czern.) Soil Biol Biochem 37:241–250

    CrossRef  CAS  Google Scholar 

  • Belimov AA, Dodd IC, Safronova VI, Hontzeas N, Davies WJ (2007) Pseudomonas brassicacearum strain Am3 containing 1-aminocyclopropane-1-carboxylate deaminase can show both pathogenic and growth-promoting properties in its interaction with tomato. J Exp Bot 58:1485–1495

    CrossRef  PubMed  CAS  Google Scholar 

  • Belimov AA, Dodd IC, Safronova VI, Davies WJ (2009) ACC-deaminase-containing rhizobacteria improve vegetative development and yield of potato plants grown under water limited conditions. Asp Appl Biol 98:163–169

    Google Scholar 

  • Bernardo MA, Dieguez ET, Jones HG, Chairez FA, Ojanguren CLT, Cortes AL (2000) Screening and classification of cowpea genotypes for salt tolerance during germination. Int J Exp Bot 67:71–84

    Google Scholar 

  • Bertolla F, Simonet P (1999) Horizontal gene transfer in the environment: natural transformation as a potential process for gene transfer between transgenic plants and microorganisms. Res Microbiol 150:375–384

    CrossRef  PubMed  CAS  Google Scholar 

  • Blumwald E (2000) Sodium transport and salt tolerance in plants. Curr Opin Cell Biol 12:431–434

    CrossRef  PubMed  CAS  Google Scholar 

  • Boyd RS (2010) Heavy metal pollutants and chemical ecology: exploring new frontiers. J Chem Ecol 36:46–58

    CrossRef  PubMed  CAS  Google Scholar 

  • Bradford KJ, Yang SF (1980) Xylem transport of 1-aminocyclopropane-1-carboxylic acid, an ethylene precursor in waterlogged tomato plants. Plant Physiol 65:322–326

    CrossRef  PubMed  PubMed Central  CAS  Google Scholar 

  • Brown RW (1977) Water relations of rane plants. In: Sosebee RE (ed) Rangeland plant physiology. Rane Sc. Ser.4.Soc for rane Manage, Denver, Colo, pp 7–140

    Google Scholar 

  • Burd GI, Dixon DG, Glick BR (1998) A plant growth-promoting bacterium that decreases nickel toxicity in seedlings. Appl Env Microbiol 64:3663–3668

    CAS  Google Scholar 

  • Burd GI, Dixon DG, Glick BR (2000) Plant growth-promoting bacteria that decrease heavy metal toxicity in plants. Can J Microbiol 46:237–245

    CrossRef  PubMed  CAS  Google Scholar 

  • Cardinale M, Ratering S, Suarez C, Montoya AMZ, Plaum RG, Schnell S (2015) Paradox of plant growth promotion potential of rhizobacteria and their actual promotion effect on growth of barley (Hordeum vulgare L.) under salt stress. Microbiol Res 181:22–32

    CrossRef  PubMed  CAS  Google Scholar 

  • Carlos MHJ, Stefani PVY, Janette AM, Melani MSS, Gabriela PO (2016) Assessing the effects of heavy metals in ACC deaminase and IAA production on plant growth promoting bacteria. Microbiol Res 188(189):53–61

    CrossRef  PubMed  CAS  Google Scholar 

  • Cavalca L, Zanchi R, Corsini A, Colombo M, Romagnoli C, Canzi E, Andreoni V (2010) Arsenic-resistant bacteria associated with roots of the wild Cirsium arvense (L.) plant from anarsenic polluted soil, and screening of potential plant growth-promoting characteristics. Syst Appl Microbiol 33:154–164

    CrossRef  PubMed  CAS  Google Scholar 

  • Chao Q, Rothenberg M, Solano R, Roman G, Terzaghi W, Ecker JR (1997) Activation of the ethylene gas response pathway in Arabidopsis by the nuclear protein and related proteins. Cell 89:1133–1144

    CrossRef  PubMed  CAS  Google Scholar 

  • Chaudhary D, Sindhu SS (2015) Inducing salinity tolerance in chickpea (Cicer arietinum L.) by inoculation of 1-aminocyclopropen-1-carboxylic acid deaminase-containing Mesorhizobium strains. Afri J Microbiol Res 9(2):117–124

    CrossRef  CAS  Google Scholar 

  • Cheikh N, Jones RJ (1994) Disruption of maize kernel growth and development by heat stress (role of cytokinin/abscisic acid balance). Plant Physiol 106:45–51

    CrossRef  PubMed  PubMed Central  CAS  Google Scholar 

  • Cheng Z, Park E, Glick BR (2007) 1-Aminocyclopropane-1-carboxylate deaminase from Pseudomonas putida UW4 facilitates the growth of canola in the presence of salt. Can J Microbiol 53:912–918

    CrossRef  PubMed  CAS  Google Scholar 

  • Chookietwattana K, Maneewan K (2012) Selection of efficient salt-tolerant bacteria containing ACC deaminase for promotion of tomato growth under salinity stress. Soil Environ 31(1):30–36

    CAS  Google Scholar 

  • Das I, Pradhan M (2016) Potassium-solubilizing microorganisms and their role in enhancing soil fertility and health. In: Meena VS, Maurya BR, Verma JP, Meena RS (eds) Potassium solubilizing microorganisms for sustainable agriculture. Springer, New Delhi, pp 281–291. https://doi.org/10.1007/978-81-322-2776-2_20

    CrossRef  Google Scholar 

  • Dashti N, Prithiviraj B, Zhou X, Hynes RK, Smith DL (2000) Combined effects of plant growth promoting biotypes of stellaria media. Ann Bot 68:167–172

    Google Scholar 

  • de Souza R, Meyer J, Schoenfeld R, Costa PB, Passaglia LMP (2015) Characterization of plant growth-promoting bacteria associated with rice cropped in iron-stressed soils. Ann Microbiol 65:951–964

    CrossRef  CAS  Google Scholar 

  • Dell’Amico A, Cavalca L, Andreoni V (2008) Improvement of Brassica napus growth under cadmium stress by cadmium-resistant rhizobacteria. Soil Biol Biochem 40:74–84

    CrossRef  CAS  Google Scholar 

  • Dey R, Pal KK, Bhatt DM, Chauhan SM (2004) Growth promotion and yield enhancement of peanut (Arachis hypogaea L.) by application of plant growth-promoting rhizobacteria. Microbiol Res 159:371–394

    CrossRef  PubMed  CAS  Google Scholar 

  • Dobbelaere S, Vanderleyden J, Okon Y (2003) Plant growth-promoting effects of diazotrophs in the rhizosphere. Crit Rev Plant Sci 22:107–149

    CrossRef  CAS  Google Scholar 

  • Dodd IC, Belimov AA, Sobeih WY, Safronova VI, Grierson D, Davies WJ (2005) Will modifying plant ethylene status improve plant productivity in water-limited environments? In: 4th International Crop Science Congress, Brisbane

    Google Scholar 

  • Domenech J, Reddy MS, Kloepper JW, Ramos B, Gutierrez-Manero J (2006) Combined application of the biological product LS213 with Bacillus, Pseudomonas or Chryseobacterium for growth promotion and biological control of soil borne diseases in pepper and tomato. BioControl 51:245

    CrossRef  CAS  Google Scholar 

  • Dominguez-Nunez JA, Benito B, Berrocal-Lobo M, Albanesi A (2016) Mycorrhizal fungi: role in the solubilization of potassium. In: Meena VS, Maurya BR, Verma JP, Meena RS (eds) Potassium solubilizing microorganisms for sustainable agriculture. Springer, New Delhi, pp 77–98. https://doi.org/10.1007/978-81-322-2776-2_6

    CrossRef  Google Scholar 

  • Donate-Correa J, Leon-Barrios M, Perez-Galdona R (2004) Screening for plant growth-promoting rhizobacteria in Chamaecytisus proliferus (tagasaste), a forage tree-shrub legume endemic to the Canary Islands. Plant Soil 266:261–272

    CrossRef  CAS  Google Scholar 

  • Dotaniya ML, Meena VD, Basak BB, Meena RS (2016) Potassium uptake by crops as well as microorganisms. In: Meena VS, Maurya BR, Verma JP, Meena RS (eds) Potassium solubilizing microorganisms for sustainable agriculture. Springer, New Delhi, pp 267–280. https://doi.org/10.1007/978-81-322-2776-2_19

    CrossRef  Google Scholar 

  • Duan J, Kirsten MM, Trevor C, Vesely C, Vesely S, Glick BR (2009) 1-Aminocyclopropane-1-Carboxylate (ACC) deaminase genes in Rhizobia from Southern Saskatchewan. Microb Ecol 57:423–436

    CrossRef  PubMed  CAS  Google Scholar 

  • Egamberdieva D, Berg G, Lindstrom K, Rasanen LA (2013) Alleviation of salt stress of symbiotic Galega offi cinalis L. (Goat’s Rue) by co-inoculation of Rhizobium with root colonising Pseudomonas. Plant Soil 369:453–465

    CrossRef  CAS  Google Scholar 

  • Farajzadeh D, Aliasgharzad N, Bashir NS, Yakhchali B (2010) Cloning and characterization of a plasmid encoded ACC deaminase from an indigenous Pseudomonas fluorescens FY32. Curr Microbiol 61:37–43

    CrossRef  PubMed  CAS  Google Scholar 

  • Farwell AJ, Vesely S, Nero V, Rodriguez H, McCormack K, Shah S, Dixon DG, Glick BR (2007) Tolerance of transgenic canola plants (Brassica napus) amended with plant growth-promoting bacteria to flooding stress at a metal-contaminated field site. Environ Pollut 147:540–545

    CrossRef  PubMed  CAS  Google Scholar 

  • Frankenberger WT, Arshad M (1995) Phytohormones in soils: microbial production and function. Marcel Dekker, New York, p 503

    Google Scholar 

  • Fujino A, Ose T, Yao M, Tokiwano T, Honma M, Watanabe N, Tanaka I (2004) Structural and enzymatic properties of 1-aminocyclopropane-1-carboxylate deaminase homologue from Pyrococcus horikoshii. J Mol Biol 341:999–1013

    CrossRef  PubMed  CAS  Google Scholar 

  • Gamalero E, Berta G, Glick BR (2009) The use of microorganisms to facilitate the growth of plants in saline soils. In: Microbial strategies for crop improvement. Springer, Berlin, pp 1–22

    Google Scholar 

  • Ganesan V (2008) Rhizoremediation of cadmium soil using a cadmium-resistant plant growth-promoting Rhizopseudomonad. Curr Microbiol 56:403–407

    CrossRef  PubMed  CAS  Google Scholar 

  • Ghosh S, Penterman JN, Little RD, Chavez R, Glick BR (2003) Three newly isolated plant growth promoting bacilli facilitates the seedling growth of canola, Brassica campestris. Plant Physiol Biochem 41:277–281

    CrossRef  CAS  Google Scholar 

  • Ghosh PK, Saha P, Mayilraj S, Maiti TK (2013) Role of IAA metabolizing enzymes on production of IAA in root, nodule of Cajanus cajan and its PGP Rhizobium sp. Biocata Agri Biotech 2:234–239

    Google Scholar 

  • Ghosh PK, Sen SK, Maiti TK (2015a) Characterization of IAA producing Enterobacter spp. (Gammaproteobacteria) isolated from root nodules of a legume Abrus precatorius L. Biocata Agri Biotech 4:296–303

    Google Scholar 

  • Ghosh PK, De TK, Maiti TK (2015b) Production and metabolism of indole acetic acid in root nodules and symbiont (Rhizobium undicola) isolated from root nodule of aquatic medicinal legume Neptunia oleracea Lour. J Bot :1–11. https://doi.org/10.1155/2015/575067

    CrossRef  CAS  Google Scholar 

  • Glazebrook J (2005) Contrasting mechanisms of defense against biotrophic and necrotrophic pathogens. Annu Rev Phytopathol 43:205–227

    CrossRef  PubMed  CAS  Google Scholar 

  • Glick BR (2005) Modulation of plant ethylene levels by the bacterial enzyme ACC deaminase. FEMS Microbiol Lett 251:1–7

    CrossRef  PubMed  CAS  Google Scholar 

  • Glick BR (2014) Bacteria with ACC deaminase can promote plant growth and help to feed the world. Microbiol Res 169:30–39

    CrossRef  PubMed  CAS  Google Scholar 

  • Glick BR, Jacobson CB, Schwarze MMK, Pasternak JJ (1994) 1-Aminocyclopropane-1-carboxylic acid deaminase mutants of the plant growth promoting rhizobacteria Pseudomonas putida GR12-2 do not stimulate canola root elongation. Can J Microbiol 40:911–915

    CrossRef  CAS  Google Scholar 

  • Glick BR, Karaturovic DM, Newell PC (1995) A novel procedure for rapid isolation of plant growth promoting pseudomonads. Can J Microbiol 41:533–536

    CrossRef  CAS  Google Scholar 

  • Glick BR, Penrose DM, Li J (1998) A model for the lowering of plant ethylene concentrations by plant growth promoting bacteria. J Theor Biol 190:63–68

    CrossRef  PubMed  CAS  Google Scholar 

  • Glick BR, Patten CL, Holgiun G, Penrose DM (1999) Biochemical and genetic mechanisms used by plant growth promoting bacteria. Imperial College Press, London, p 276

    CrossRef  Google Scholar 

  • Glick BR, Cheng ZY, Czarny J, Duan J (2007) Promotion of plant growth by ACC deaminase producing soil bacteria. Eur J Plant Pathol 119(3):329–339

    CrossRef  CAS  Google Scholar 

  • Goodlass G, Smith KA (1979) Effects of ethylene on root extension and nodulation of pea (Pisum sativum L.) and white clover (Trifolium repens L.) Plant Soil 51:387–395

    CrossRef  CAS  Google Scholar 

  • Govindasamy V, Senthil KM, Gaikwad K, Annapurna K (2008a) Isolation and characterization of ACC deaminase gene from two plant growth promoting rhizobacteria. Curr Microbiol 57:312–317

    CrossRef  PubMed  CAS  Google Scholar 

  • Govindasamy V, Senthil KM, Upendra K, Annapurna K (2008b) PGPR-biotechnology for management of abiotic and biotic stresses in crop plants. In: Maheshwari DK, Dubey RC (eds) Potential microorganisms for sustainable agriculture. IK International, New Delhi, pp 26–48

    Google Scholar 

  • Govindasamy V, Senthilkumar M, Annapurna K (2015) Effect of mustard rhizobacteria on wheat growth promotion under cadmium stress: characterization of acdS gene coding ACC deaminase. Ann Microbiol 65:1679–1687

    CrossRef  CAS  Google Scholar 

  • Grichko VP, Glick BR (2001a) Amelioration of flooding stress by ACC deaminase-containing plant growth-promoting bacteria. Plant Physiol Biochem 39:11–17

    CrossRef  CAS  Google Scholar 

  • Grichko VP, Glick BR (2001b) Flooding tolerance of transgenic tomato plants expressing the bacterial enzyme ACC deaminase controlled by the 35S, rolD or PRB-1b promoter. Plant Physiol Biochem 39:19–25

    CrossRef  CAS  Google Scholar 

  • Grichko VP, Filby B, Glick BR (2000) Increased ability of transgenic plants expressing the bacterial enzyme ACC deaminase to accumulate Cd, Co, Cu, Ni, Pb, and Zn. J Biotechnol 81:45–53

    CrossRef  PubMed  CAS  Google Scholar 

  • Grobbelaar N, Clarke B, Hough MC, Grobbelaar N, Clarke B, Hough MC (1971) The nodulation and nitrogen fixation of isolated roots of Phaseolus vulgaris L. III. The effect of carbon dioxide and ethylene. Plant Soil:216–223

    Google Scholar 

  • Guinel FC, Sloetjes LL (2000) Ethylene is involved in the nodulation phenotype of Pisum sativum R50 (sym 16), a pleiotropic mutant that nodulates poorly and has pale green leaves. J Exp Bot 51:885–894

    PubMed  CAS  Google Scholar 

  • Guo J, Chi J (2014) Effect of Cd-tolerant plant growth-promoting rhizobium on plant growth and Cd uptake by Lolium multiflorum Lam. and Glycine max (L.) Merr.in Cd-contaminated soil. Plant Soil 375:205–214

    CrossRef  CAS  Google Scholar 

  • Habib SH, Kausar H, Saud HM (2015) Plant growth-promoting rhizobacteria enhance salinity stress tolerance in okra through ROS-scavenging enzymes. BioMed Res Int (Hindawi Publishing Corporation) https://doi.org/10.1155/2016/6284547

  • Han Y, Wang R, Yang Z, Zhan Y, Ma Y, Ping S, Zhang L, Lin M, Yan Y (2015) 1-Aminocyclopropane-1-carboxylate deaminase from Pseudomonas stutzeri A1501 facilitates the growth of Rice in the presence of salt or heavy metals. J Microbiol Biotechnol 25(7):1119–1128

    CrossRef  PubMed  CAS  Google Scholar 

  • Hao Y, Charles TC, Glick BR (2007) ACC deaminase from plant growth-promoting bacteria affects crown gall development. Can J Microbiol 53:1291–1299

    CrossRef  PubMed  CAS  Google Scholar 

  • Hassan W, Bano R, Bashir F, David J (2014) Comparative effectiveness of ACC-deaminase and/or nitrogen fixing rhizobacteria in promotion of maize (Zea mays L.) growth under lead pollution. Environ Sci Pollut Res 21:10983–10996

    CrossRef  PubMed  CAS  Google Scholar 

  • Hassan W, Bashir S, Ali F, Ijaz M, Hussain M, David J (2016) Role of ACC-deaminase and/or nitrogen fixing rhizobacteria in growth promotion of wheat (Triticum aestivum L.) under cadmium pollution. Environ Earth Sci 75:267

    CrossRef  CAS  Google Scholar 

  • Honma M, Shimomura T (1978) Metabolism of l-aminocyclopropane-1-carboxylic acid. Agri Biol Chem 42:1825–1831

    CAS  Google Scholar 

  • Hontzeas N, Saleh S, Glick BR (2004a) Changes in gene expression in canola roots induced by ACC-deaminase-containing plant-growth-promoting bacteria. Mol Plant-Microbe Interact 12:951–959

    Google Scholar 

  • Hontzeas N, Zoidakis J, Glick BR, Abu-Omar MM (2004b) Expression and characterization of 1-aminocyclopropane-1-carboxylate deaminase from the rhizobacterium Pseudomonas putida UW4: a key enzyme in bacterial plant growth promotion. Biochem Biophys Acta 1703:11–19

    PubMed  CAS  Google Scholar 

  • Hontzeas N, Richardson AO, Belimov A, Safronova V, Abu-Omar MM, Glick BR (2005) Evidence for horizontal transfer of 1-aminocyclopropane-1-carboxylate deaminase genes. Appl Env Microbiol 71:7556–7558

    CrossRef  CAS  Google Scholar 

  • Hontzeas N, Hontzeas CE, Glick BR (2006) Reaction mechanisms of bacterial enzyme 1-aminocyclopropane-1-carboxylate deaminase. Biotechnol Adv 24:420–426

    CrossRef  PubMed  CAS  Google Scholar 

  • Hu X, Boyer GL (1996) Siderophore-mediated aluminium uptake by Bacillus megaterium ATCC 19213. Appl Environ Microbiol 62:4044–4048

    PubMed  PubMed Central  CAS  Google Scholar 

  • Huang XD, El-Alawi Y, Penrose DM, Glick BR, Greenberg BM (2004) Multi-process phytoremediation system for removal of polycyclic aromatic hydrocarbons from contaminated soils. Environ Pollut 130:465–476

    CrossRef  PubMed  CAS  Google Scholar 

  • Husen E, Wahyudi AT, Suwanto A, Saraswati R (2008) Prospective use of 1-Aminocyclopropane-1-carboxylate deaminase-producing bacteria for plant growth promotion and defense against biotic and abiotic stresses in peat-soil-agriculture. Microbiology 2(3):107–111

    Google Scholar 

  • Islam F, Yasmeen T, Arif SM, Riaz M, Shahzad MS, Imran Q, Ali I (2016) Combined ability of chromium (Cr) tolerant plant growth promoting bacteria (PGPB) and salicylic acid (SA) in attenuation of chromium stress in maize plants. Plant Physiol Biochem 108:456–467

    CrossRef  PubMed  CAS  Google Scholar 

  • Jacobson CB, Pasternak JJ, Glick BR (1994) Partial purification and characterization of ACC deaminase from the plant growth-promoting rhizobacterium Pseudomonas putida GR12-2. Can J Microbiol 40:1019–1025

    CrossRef  CAS  Google Scholar 

  • Jain S, Vaishnav A, Kasotia A, Kumari S, Gaur RK, Choudhary DK (2013) Bacteria-induced systemic resistance and growth promotion in Glycine max L. Merrill upon challenge inoculation with Fusarium oxysporum. Proc Natl Acad Sci, India Sect B Biol Sci 83(4):561–567

    CrossRef  CAS  Google Scholar 

  • Jaiswal DK, Verma JP, Prakash S, Meena VS, Meena RS (2016) Potassium as an important plant nutrient in sustainable agriculture: a state of the art. In: Meena VS, Maurya BR, Verma JP, Meena RS (eds) Potassium solubilizing microorganisms for sustainable agriculture. Springer, New Delhi, pp 21–29. https://doi.org/10.1007/978-81-322-2776-2_2

    CrossRef  Google Scholar 

  • Jaleel CA, Manivannan P, Sankar B, Kishore KA, Gopi R, Somasundaram R, Panneerselvam R (2007) Pseudomonas fluorescens enhances biomass yield and ajmalicine production in Catharanthus roseus under water deficit stress. Colloids Surf B Biointer 60:7–11

    CrossRef  CAS  Google Scholar 

  • Jalili F, Khavazi K, Pazira E, Nejati A, Rahmani HA, Sadaghiani HR, Miransari M (2009) Isolation and characterization of ACC deaminase-producing fluorescent pseudomonads, to alleviate salinity stress on canola (Brassica napus L.) growth. J Plant Physiol 166:667–674

    CrossRef  PubMed  CAS  Google Scholar 

  • Jat LK, Singh YV, Meena SK, Meena SK, Parihar M, Jatav HS, Meena RK, Meena VS (2015) Does integrated nutrient management enhance agricultural productivity? J Pure Appl Microbiol 9(2):1211–1221

    CAS  Google Scholar 

  • Jha Y, Subramanian RB (2016) Regulation of plant physiology and antioxidant enzymes for alleviating salinity stress by potassium-mobilizing bacteria. In: Meena VS, Maurya BR, Verma JP, Meena RS (eds) Potassium solubilizing microorganisms for sustainable agriculture. Springer, New Delhi, pp 149–162. https://doi.org/10.1007/978-81-322-2776-2_11

    CrossRef  Google Scholar 

  • Ji Y, Huang X (2008) Amelioration of salt stress on annual rye grass by ACC deaminase containing plant growth-promoting rhizobacteria. In: 2nd international conference on bioinformatics and biomedical engineering (ICBBE), Shanghai, pp 16–18

    Google Scholar 

  • Jia YJ, Kakuta Y, Sugawara M, Igarashi T, Oki N, Kisaki M, Shoji T, Kanetuna Y, Horita T, Matsui H, Honma M (1999) Synthesis and degradation of 1-aminocyclopropane-1-carboxylic acid by Penicillium citrinum. Biosci Biotechnol Biochem 63:542–549

    CrossRef  PubMed  CAS  Google Scholar 

  • Jiang C, Xia-fang S, Meng Q, Wang Q (2008) Isolation and characterization of a heavy metal-resistant Burkholderia sp. from heavy metal-contaminated paddy field soil and its potential in promoting plant growth and heavy metal accumulation in metal-polluted soil. Chemosphere 72(2):157–164

    CrossRef  PubMed  CAS  Google Scholar 

  • Jiang F, Chen L, Belimov AA, Shaposhnikov AI, Gong F, Meng X, Hartung W, Jeschke DW, Davies WJ, Dodd IC (2012) Multiple impacts of the plant growth-promoting rhizobacterium Variovorax paradoxus 5C-2 on nutrient and ABA relations of Pisum sativum. J Exp Bot 63(18):6421–6430

    CrossRef  PubMed  PubMed Central  CAS  Google Scholar 

  • Kamran MA, Syed JH, Eqani SAMAS, Munis MFH, Chaudhary HJ (2015) Effect of plant growth-promoting rhizobacteria inoculation on cadmium (Cd) uptake by Eruca sativa. Environ Sci Pollut Res 22:9275–9283

    CrossRef  CAS  Google Scholar 

  • Kaneko T, Nakamura Y, Sato S, Minamisawa K, Uchiumi T, Sasamoto S, Watanabe A, Idesawa K, Iriguchi M, Kawashima K, Kimura T, Mochizuki Y, Nakayama S, Nakazaki N, Shimpo S, Sugimoto M, Takeuchi C, Yamada M, Tabata S (2000) Complete genome sequence of the nitrogen- fixing symbiotic bacterium Mesorhizobium loti. DNA Res 7:331–338

    CrossRef  PubMed  CAS  Google Scholar 

  • Kaneko T, Nakamura Y, Sato S, Minamisawa K, Uchiumi T, Sasamoto S, Watanabe A, Idesawa IKM, Kawashima K, Kohara M, Matsumoto M, Shimpo S, Tsuruoka H, Wada T, Yamada M, Tabata S (2002) Complete genome sequence of nitrogen – fixing symbiotic bacterium Bradyrhizobium japonicum USD 110. DNA Res 31:189–197

    CrossRef  Google Scholar 

  • Karthikeyan S, Zhou Q, Zhao Z, Kao C, Tao Z, Robinson H (2004) Structural analysis of Pseudomonas 1-aminocyclopropane-1-carboxylate deaminase complexes: insight into the mechanism of a unique pyridoxal-5-phosphate dependent cyclopropane ring opening reaction. Bioche 43:13328–13339

    CrossRef  CAS  Google Scholar 

  • Karthikeyan B, Joe MM, Islam Md R, Sa T (2012) ACC deaminase containing diazotrophic endophytic bacteria ameliorate salt stress in Catharanthus roseus through reduced ethylene levels and induction of antioxidative defense systems. Symbiosis 56:77–86

    CrossRef  CAS  Google Scholar 

  • Kausar R, Shahzad SM (2006) Effect of ACC-deaminase containing rhizobacteria on growth promotion of maize under salinity stress. J Agri Soc Sci 2:216–218

    Google Scholar 

  • Khandelwal A, Sindhu SS (2013) ACC deaminase containing Rhizobacteria enhance nodulation and plant growth in cluster bean (Cyamopsis tetragonoloba L.) J Microbiol Res 3(3):117–123

    Google Scholar 

  • Kiani MZ, Ali A, Sultan T, Ahmad R, Hydar SI (2015) Plant growth promoting Rhizobacteria having 1-Aminocyclopropane-1-carboxylic acid deaminase to induce salt tolerance in sunflower (Helianthus annuus L.) Nat Res 6:391–397

    Google Scholar 

  • Kim SY, Mulkey TJ (1997) Effect of ethylene antagonists on auxin-induced inhibition of intact primary root elongation in maize (Zea mays L.) J Plant Biol 40:256–260

    CrossRef  CAS  Google Scholar 

  • KiYoon K, TongMin S (2013) Effect of ACC deaminase producing PGPR strains inoculation on the early growth and nutrient uptake of crop plants in saemangeum reclaimed soil. Proceedings of 3rd Asian Conference on Plant Growth Promoting Rhizobacteria (PGPR) and other Microbials, Manila, Philippines

    Google Scholar 

  • Kloepper JW, Lifshitz R, Zablotowicz RM (1989) Free-living bacterial inocula for enhancing crop productivity. Trends Biotechnol 7:39–43

    CrossRef  Google Scholar 

  • Kong Z, Glick BR, Duan J, Ding S, Tian J, McConkey BJ, Wei G (2015) Effects of 1-aminocyclopropane-1-carboxylate (ACC) deaminase-over producing Sinorhizobium meliloti on plant growth and copper tolerance of Medicago lupulina. Plant Soil 391:383–398

    CrossRef  CAS  Google Scholar 

  • Kumar MD, Patel A, Ravindranath R, Singh OP (2008a) Chasing a mirage: water harvesting and artificial recharge in naturally water-scarce regions. Econ Polit Wkly 43:61–71

    Google Scholar 

  • Kumar KV, Singh N, Behl HM, Srivastava S (2008b) Influence of plant growth promoting bacteria and its mutant on heavy metal toxicity in Brassica juncea grown in fly ash amended soil. Chemosphere 72:678–683

    CrossRef  PubMed  CAS  Google Scholar 

  • Kumar A, Kumar A, Pratush A (2014) Molecular diversity and functional variability of environmental isolates of Bacillus species. Springer Plus 3:312

    CrossRef  PubMed  PubMed Central  CAS  Google Scholar 

  • Kumar A, Bahadur I, Maurya BR, Raghuwanshi R, Meena VS, Singh DK, Dixit J (2015) Does a plant growth-promoting rhizobacteria enhance agricultural sustainability? J Pure Appl Microbiol 9:715–724

    Google Scholar 

  • Kumar A, Meena R, Meena VS, Bisht JK, Pattanayak A (2016a) Towards the stress management and environmental sustainability. J Clean Prod 137:821–822

    CrossRef  Google Scholar 

  • Kumar A, Patel JS, Bahadur I, Meena VS (2016b) The molecular mechanisms of KSMs for enhancement of crop production under organic farming. In: Meena VS, Maurya BR, Verma JP, Meena RS (eds) Potassium solubilizing microorganisms for sustainable agriculture. Springer, New Delhi, pp 61–75. https://doi.org/10.1007/978-81-322-2776-2_5

    CrossRef  Google Scholar 

  • Kumar A, Maurya BR, Raghuwanshi R, Meena VS, Islam MT (2017) Co-inoculation with Enterobacter and Rhizobacteria on yield and nutrient uptake by wheat (Triticum aestivum L.) in the alluvial soil under indo-gangetic plain of India. J Plant Growth Regul. https://doi.org/10.1007/s00344-016-9663-5

  • Kunkel BN, Brooks DM (2002) Cross talk between signaling pathways in pathogen defense. Curr Opin Plant Biol 5:325–331

    CrossRef  PubMed  CAS  Google Scholar 

  • Lambers H (2003) Dry land salinity: a key environmental issue in southern Australia. Plant Soil 218:5–7

    Google Scholar 

  • Lee KH, LaRue TA (1992) Exogenous ethylene inhibits nodulation of Pisum sativum L. cv. Sparkle. Plant Physiol 100:1759–1763

    CrossRef  PubMed  PubMed Central  CAS  Google Scholar 

  • Lemus JO, Lucas IH, Girard L, Caballero-Mellado J (2009) ACC (1-Aminocyclopropane-1-carboxylate) deaminase Activity,a widespread trait in Burkholderia species, and its growth-promoting effect on tomato plants. Appl Environ Microbiol 75(20):6581–6590

    CrossRef  CAS  Google Scholar 

  • Leong J (1986) Siderophores: their biochemistry and possible role in control of plant pathogens. Annu Rev Phytopathol 24(1):187–209

    CrossRef  CAS  Google Scholar 

  • Li Z, Chang S, Lin L, Li Y, An Q (2011) A colorimetric assay of 1-aminocyclopropane-1-carboxylate (ACC) based on ninhydrin reaction for rapid screening of bacteria containing ACC deaminase. Lett Appl Microbiol 53:178–185

    CrossRef  PubMed  CAS  Google Scholar 

  • Lim JH, Kim SD (2013) Induction of drought stress resistance by multi-functional PGPR Bacillus licheniformis K11 in pepper. Plant Pathol 29:201–208

    CrossRef  Google Scholar 

  • Liu L, Kloepper JW, Tuzun S (1995a) Induction of systemic resistance in cucumber against Fusarium wilt by plant growth promoting rhizobacteria. Phytopathology 85:695–698

    CrossRef  Google Scholar 

  • Liu L, Kloepper JW, Tuzun S (1995b) Induction of systemic resistance in cucumber against bacterial angular leaf spot by plant growth-promoting rhizobacteria. Phytopathology 85:843–847

    CrossRef  Google Scholar 

  • Liu L, Kloepper JW, Tuzun S (1995c) Induction of systemic resistance in cucumber by plant growth-promoting rhizobacteria: duration of protection and effect of host resistance on protection and root colonization. Phytopathology 85:1064–1068

    CrossRef  Google Scholar 

  • Lorteau MA, Ferguson BJ, Guinel FC (2001) Effects of cytokinin on ethylene production and nodulation in pea (Pisum sativum) cv. Sparkle. Physiol Plant 112:421–428

    CrossRef  PubMed  CAS  Google Scholar 

  • Lund ST, Stall RE, Klee HJ (1998) Ethylene regulates the susceptible response to pathogen infection in tomato. Plant Cell 10:371–382

    CrossRef  PubMed  PubMed Central  CAS  Google Scholar 

  • Ma W, Guinel FC, Glick BR (2003) Rhizobium leguminosarum biovar viciae 1-aminocyclopropane-1-carboxylate deaminase promotes nodulation of pea plants. Appl Env Microbiol 69:4396–4402

    CrossRef  CAS  Google Scholar 

  • Madhaiyan M, Poonguzhali S, Ryu J, Sa T (2006) Regulation of ethylene levels in canola (Brassica campestris) by 1-aminocyclopropane-1-carboxylate deaminase-containing Methylobacterium fujisawaense. Planta 224:268–278

    CrossRef  PubMed  CAS  Google Scholar 

  • Madhaiyan M, Kim BY, Poonguzhali S, Kwon SW, Song MH, Ryu JH, Go SJ, Koo BS, Sa TM (2007) Methylobacterium oryzae sp. nov., an aerobic, pink-pigmented, facultatively methylotrophic, 1-aminocyclopropane-1-carboxylate deaminase-producing bacterium isolated from rice. Int J Syst Evol Microbiol 57:326–331

    CrossRef  PubMed  CAS  Google Scholar 

  • Masood S, Bano A (2016) Mechanism of potassium solubilization in the agricultural soils by the help of soil microorganisms. In: Meena VS, Maurya BR, Verma JP, Meena RS (eds) Potassium solubilizing microorganisms for sustainable agriculture. Springer, New Delhi, pp 137–147. https://doi.org/10.1007/978-81-322-2776-2_10

    CrossRef  Google Scholar 

  • Maurya BR, Meena VS, Meena OP (2014) Influence of Inceptisol and Alfisol’s potassium solubilizing bacteria (KSB) isolates on release of K from waste mica. Vegetos 27:181–187

    Google Scholar 

  • Mayak S, Tirosh T, Glick BR (1999) Effect of wild-type and mutant plant growth-promoting rhizobacteria on the rooting of mung bean cuttings. J Plant Growth Regul 18:49–53

    CrossRef  PubMed  CAS  Google Scholar 

  • Mayak S, Tirosh T, Glick BR (2004a) Plant growth-promoting bacteria confer resistance in tomato plants to salt stress. Plant Physiol Biochem 42:565–572

    CrossRef  PubMed  CAS  Google Scholar 

  • Mayak S, Tirosh T, Glick BR (2004b) Plant growth-promoting bacteria that confer resistance to water stress in tomatoes and peppers. Plant Sci 166:525–530

    CrossRef  CAS  Google Scholar 

  • McDonnell L, Plett JM, Andersson GS, Kozela C, Dugardeyn J, Van Der SD, Glick BR, Sundberg B, Regan S (2009) Ethylene levels are regulated by a plant encoded 1-aminocyclopropane-1-carboxylic acid deaminase. Physiol Plant 136:94–109

    CrossRef  PubMed  CAS  Google Scholar 

  • McKeon TA, Fernández-Maculet JC, Yang SF (1995) Biosynthesis and metabolism of ethylene. In plant hormones: physiology, biochemistry and molecular biology, 2nd edn. P.J. Davies, Kluwer, Dordrecht, pp 118–139

    Google Scholar 

  • Meena OP, Maurya BR, Meena VS (2013a) Influence of K-solubilizing bacteria on release of potassium from waste mica. Agric Sust Dev 1:53–56

    Google Scholar 

  • Meena VS, Maurya BR, Bohra JS, Verma R, Meena MD (2013b) Effect of concentrate manure and nutrient levels on enzymatic activities and microbial population under submerged rice in alluvium soil of Varanasi. Crop Res 45(1,2 & 3):6–12

    Google Scholar 

  • Meena VS, Maurya BR, Verma R, Meena RS, Jatav GK, Meena SK, Meena SK (2013c) Soil microbial population and selected enzyme activities as influenced by concentrate manure and inorganic fertilizer in alluvium soil of Varanasi. The Bioscan 8(3):931–935

    CAS  Google Scholar 

  • Meena VS, Maurya BR, Bahadur I (2014a) Potassium solubilization by bacterial strain in waste mica. Bang J Bot 43:235–237

    Google Scholar 

  • Meena VS, Maurya BR, Verma JP (2014b) Does a rhizospheric microorganism enhance K+ availability in agricultural soils? Microbiol Res 169:337–347

    CrossRef  PubMed  CAS  Google Scholar 

  • Meena RS, Meena VS, Meena SK, Verma JP (2015a) The needs of healthy soils for a healthy world. J Cleaner Prod 102:560–561

    CrossRef  Google Scholar 

  • Meena RS, Meena VS, Meena SK, Verma JP (2015b) Towards the plant stress mitigate the agricultural productivity: a book review. J Clean Prod 102:552–553

    CrossRef  Google Scholar 

  • Meena VS, Maurya BR, Meena RS (2015c) Residual impact of wellgrow formulation and NPK on growth and yield of wheat (Triticum aestivum L.) Bangladesh J Bot 44(1):143–146

    CrossRef  Google Scholar 

  • Meena VS, Maurya BR, Verma JP, Aeron A, Kumar A, Kim K, Bajpai VK (2015d) Potassium solubilizing rhizobacteria (KSR): isolation, identification, and K-release dynamics from waste mica. Ecol Eng 81:340–347

    CrossRef  Google Scholar 

  • Meena VS, Meena SK, Verma JP, Meena RS, Ghosh BN (2015e) The needs of nutrient use efficiency for sustainable agriculture. J Clean Prod 102:562–563. https://doi.org/10.1016/j.jclepro.2015.04.044

    CrossRef  Google Scholar 

  • Meena VS, Verma JP, Meena SK (2015f) Towards the current scenario of nutrient use efficiency in crop species. J Clean Prod 102:556–557. https://doi.org/10.1016/j.jclepro.2015.04.030

    CrossRef  Google Scholar 

  • Meena RK, Singh RK, Singh NP, Meena SK, Meena VS (2016a) Isolation of low temperature surviving plant growth-promoting rhizobacteria (PGPR) from pea (Pisum sativum L.) and documentation of their plant growth promoting traits. Biocatalysis and agricultural. Biotechnology 4:806–811

    Google Scholar 

  • Meena RS, Bohra JS, Singh SP, Meena VS, Verma JP, Verma SK, Sihag SK (2016b) Towards the prime response of manure to enhance nutrient use efficiency and soil sustainability a current need: a book review. J Clean Prod 112(1):1258–1260

    CrossRef  Google Scholar 

  • Meena VS, Meena SK, Bisht JK, Pattanayak A (2016c) Conservation agricultural practices in sustainable food production. J Clean Prod 137:690–691

    CrossRef  Google Scholar 

  • Mendelsohn R, Rosenberg NJ (1994) Framework for integrated assessments of global warming impacts. Clim Chang 28:15–44

    CrossRef  CAS  Google Scholar 

  • Minami R, Uchiyama K, Murakami T, Kawai J, Mikami K, Yamada T (1998) Properties, sequence, and synthesis in Escherichia coli of 1-aminocyclopropane-1-carboxylate deaminase from Hansenula saturnus. J Biochem (Tokyo) 123:1112–1118

    CrossRef  CAS  Google Scholar 

  • Miransari M, Jalili F, Khavazi K, Pazira E, Nejati A, Rahmani HA, Sadaghiani HR (2009) Isolation and characterization of ACC deaminase producing fluorescent pseudomonads to alleviate salinity stress on canola (Brassica napus L.) growth. J Plant Physiol 166:667–674

    CrossRef  PubMed  CAS  Google Scholar 

  • Moreira H, Marques APGC, Franco AR, Rangel AOSS, Castro PML (2014) Phytomanagement of Cd-contaminated soils using maize (Zea mays L.) assisted by plant growth-promoting rhizobacteria. Environ Sci Pollut Res 21:9742–9753

    CrossRef  CAS  Google Scholar 

  • Morgan W, Drew MC (1997) Ethylene and plant responses to stress. Physiol Plant 100:620–630

    CrossRef  CAS  Google Scholar 

  • Munns R (2002) Comparative physiology of salt and water stress. Plant Cell Environ 25(2):239–250

    CrossRef  PubMed  CAS  Google Scholar 

  • Munns R, Tester M (2008) Mechanisms of salinity tolerance. Annu Rev Plant Biol 59:651–681

    CrossRef  PubMed  CAS  Google Scholar 

  • Musarrat J, Khedhairy AA, Al-Arifi S, Khan MS (2009) Role of 1-aminocyclopropane-1-427 carboxylate deaminase in rhizobium-legume symbiosis. In: Khan MS, Zaidi A, Musarat J (eds) 428 microbial strategies for crop improvement. Springer, Berlin, pp 63–83

    CrossRef  Google Scholar 

  • Nadeem SM, Zahir ZA, Naveed M, Arshad M (2007) Preliminary investigations on inducing salt tolerance in maize through inoculation with rhizobacteria containing ACC deaminase activity. Can J Microbiol 53:1141–1149

    CrossRef  PubMed  CAS  Google Scholar 

  • Nadeem SM, Zahir ZA, Naveed M, Arshad M (2009) Rhizobacteria containing ACC-deaminase confers salt tolerance in maize grown on salt affected fields. Can J Microbiol 55:1302–1309

    CrossRef  PubMed  CAS  Google Scholar 

  • Nadeem SM, Zahir ZA, Naveed M, Asghar HN, Arshad M (2010) Rhizobacteria capable of producing ACC-deaminase may mitigate salt stress in wheat. Soil Sci Soc Am J 74:533–542

    CrossRef  CAS  Google Scholar 

  • Nadeem SM, Zahir ZA, Naveed M, Nawaz S (2013) Mitigation of salinity-induced negative impact on the growth and yield of wheat by plant growth-promoting rhizobacteria in naturally saline conditions. Ann Microbiol 63:225–232

    CrossRef  CAS  Google Scholar 

  • Nie L, Shah S, Burd GI, Dixon DG, Glick BR (2002) Phytoremediation of arsenate contaminated soil by transgenic canola and the plant growth-promoting bacterium Enterobacter cloacae CAL2. Plant Physiol Biochem 40:355–361

    CrossRef  CAS  Google Scholar 

  • Nukui N, Ezura H, Yuhashi K, Yasuta T, Minamisawa K (2000) Effects of ethylene precursor and inhibitors for ethylene biosynthesis and perception on nodulation in Lotus japonicus and Macroptilium atropurpureum. Plant Cell Physiol 41:893–897

    CrossRef  PubMed  CAS  Google Scholar 

  • Oldroyd GE, Engstrom EM, Long SR (2001) Ethylene inhibits the Nod factor signal transduction pathway of Medicago truncatula. Plant Cell 13:1835–1849

    CrossRef  PubMed  PubMed Central  CAS  Google Scholar 

  • Orhan F (2016) Alleviation of salt stress by halotolerant and halophilic plant growth-promoting bacteria in wheat (Triticum aestivum). Braz J Microbial 47:621–627

    CrossRef  CAS  Google Scholar 

  • Ose T, Fujino A, Yao M, Watanabe N, Honma M, Tanaka I (2003) Reaction intermediate structures of 1-aminocyclopropane-1-carboxylate deaminase. J Biol Chem 278:41069–41076

    CrossRef  PubMed  CAS  Google Scholar 

  • Palaniyandi SA, Damodharan K, Yang SH, Suh JW (2014) Streptomyces sp. strain PGPA39 alleviates salt stress and promotes growth of ‘Micro Tom’ tomato plants. J Appl Microbiol 117:766–773

    CrossRef  PubMed  CAS  Google Scholar 

  • Pande AM, Kulkarni NS, Bodhankar MG (2015) Effect of PGPR with ACC- deaminase activity on growth performance of wheat cultivated under stress conditions. Int J Appl Res 2(1):723–726

    Google Scholar 

  • Pandey S, Ghosh PK, Ghosh S, De TK, Maiti TK (2013) Role of heavy metal resistant Ochrobactrum sp. and Bacillus spp. strains in bioremediation of a Rice cultivar and their PGPR like activities. J Microbiol 51:11–17

    CrossRef  PubMed  CAS  Google Scholar 

  • Parewa HP, Yadav J, Rakshit A, Meena VS, Karthikeyan N (2014) Plant growth promoting rhizobacteria enhance growth and nutrient uptake of crops. Agric Sustain Dev 2(2):101–116

    Google Scholar 

  • Pastor N, Masciarelli O, Fischer S, Luna V, Rovera M (2016) Potential of Pseudomonas putida PCI2 for the protection of tomato plants against fungal pathogens. Curr Microbiol 73:346–353

    CrossRef  PubMed  CAS  Google Scholar 

  • Paul D, Nair S (2008) Stress adaptations in a plant growth promoting Rhizobacterium (PGPR) with increasing salinity in the coastal agricultural soils. J Basic Microbiol 48:378–384

    CrossRef  PubMed  CAS  Google Scholar 

  • Penrose DM, Glick BR (2001) Levels of 1-aminocyclopropane-1-carboxylic acid (ACC) in exudates and extracts of canola seeds treated with plant growth-promoting bacteria. Can J Microbial 47:368–372

    CrossRef  CAS  Google Scholar 

  • Pereira SIA, Barbosa L, Castro PML (2015) Rhizobacteria isolated from a metal-polluted area enhance plant growth in zinc and cadmium-contaminated soil. Int J Environ Sci Technol 12:2127–2142

    CrossRef  CAS  Google Scholar 

  • Peterson TA, Rensel MD, Krizek DT (1991) Tomato (Lycopersicon esculentum Mill.cv. Better Bush) plant response to root restriction. I. Alteration of plant morphology. J Expt Bot 42:1233–1240

    CrossRef  Google Scholar 

  • Plett JM, McDonnell L, Regan S (2009) Plant encoded 1-aminocyclopropane-1-carboxylic acid deaminase activity rhizobacteria and genistein on nitrogen fixation in soybean at suboptimal root zone temperatures. J Plant Nutri 23:593–604

    Google Scholar 

  • Poonguzhali S, Madhaiyan M, Sa T (2008) Isolation and identification of phosphate solubilizing bacteria from chinese cabbage and their effect on growth and phosphorus utilization of plants. J Microbiol Biotechnol 18:773–777

    PubMed  CAS  Google Scholar 

  • Pourbabaee AA, Bahmani E, Alikhani HA, Emami S (2016) Promotion of wheat growth under salt stress by halotolerant bacteria containing ACC deaminase. J Agr Sci Tech 18:855–864

    Google Scholar 

  • Prakash S, Verma JP (2016) Global perspective of potash for fertilizer production. In: Meena VS, Maurya BR, Verma JP, Meena RS (eds) Potassium solubilizing microorganisms for sustainable agriculture. Springer, New Delhi, pp 327–331. https://doi.org/10.1007/978-81-322-2776-2_23

    CrossRef  Google Scholar 

  • Priyadharsini P, Muthukumar T (2016) Interactions between arbuscular mycorrhizal fungi and potassium-solubilizing microorganisms on agricultural productivity. In: Meena VS, Maurya BR, Verma JP, Meena RS (eds) Potassium solubilizing microorganisms for sustainable agriculture. Springer, New Delhi, pp 111–125. https://doi.org/10.1007/978-81-322-2776-2_8

    CrossRef  Google Scholar 

  • Qadir M, Quillérou E, Nangia V, Murtaza G, Singh M, Thomas RJ, Drechsel P, Noble AD (2014) Economics of salt-induced land degradation and restoration. Nat Resour Forum UN Sustain Dev J 38(4):282–295. DOI: 10.1111/1477-8947.12054

    CrossRef  Google Scholar 

  • Raghavendra MP, Nayaka NC, Nuthan BR (2016) Role of rhizosphere microflora in potassium solubilization. In: Meena VS, Maurya BR, Verma JP, Meena RS (eds) Potassium solubilizing microorganisms for sustainable agriculture. Springer, New Delhi, pp 43–59. https://doi.org/10.1007/978-81-322-2776-2_4

    CrossRef  Google Scholar 

  • Raja N (2013) Biopesticides and biofertilizers: ecofriendly sources for sustainable agriculture. J Biofertil Biopestici 1000e112:1000e112

    Google Scholar 

  • Rajkumar M, Freitas H (2008) Effects of inoculation of plant growth promoting bacteria on Ni uptake by Indian mustard. Bioresour Technol 99:3491–3498

    CrossRef  PubMed  CAS  Google Scholar 

  • Rajput L, Imran A, Mubeen F, Hafeez F (2013) Salt tolerant PGPR strain Planococcus rifietoensis promotes the growth and yield of wheat (Triticum aestivum L.) cultivated in saline soil. Pak J Bot 45(6):1955–1962

    Google Scholar 

  • Rana A, Saharan B, Joshi M, Prasanna R, Kumar K, Nain L (2011) Identification of multi-trait PGPR isolates and evaluating their potential as inoculants for wheat. Ann Microbiol 61:893–900

    CrossRef  CAS  Google Scholar 

  • Rasche F, Marco-Noales E, Velvis H, Overbeek LSV, Lopez MM, van Elsas JD, Sessitsch A (2006a) Structural characteristics and plant-beneficial effects of bacteria colonizing the shoots of field grown conventional and genetically modified T4-lysozyme producing potatoes. Plant Soil 289:123–140

    CrossRef  CAS  Google Scholar 

  • Rasche F, Velvis H, Zachow C, Berg G, Van Elsas JD, Sessitsch A (2006b) Impact of transgenic potatoes expressing anti-bacterial agents on bacterial endophytes is comparable with the effects of plant genotype, soil type and pathogen infection. J Appl Ecol 43:555–566

    CrossRef  CAS  Google Scholar 

  • Raupach GS, Liu L, Murphy JF, Tuzun S, Kloepper JW (1996) Induced systemic resistance in cucumber and tomato against cucumber mosaic cucumovirus using plant growth-promoting rhizobacteria (PGPR). Plant Dis 80:891–894

    CrossRef  Google Scholar 

  • Rawat J, Sanwal P, Saxena J (2016) Potassium and its role in sustainable agriculture. In: Meena VS, Maurya BR, Verma JP, Meena RS (eds) Potassium solubilizing microorganisms for sustainable agriculture. Springer, New Delhi, pp 235–253. https://doi.org/10.1007/978-81-322-2776-2_17

    CrossRef  Google Scholar 

  • Reed MLE, Warner BG, Glick BR (2005) Plant growth-promoting bacteria facilitate the growth of the common reed Phragmites australis in the presence of copper or polycyclic aromatic hydrocarbons. Curr Microbiol 51:425–429

    CrossRef  PubMed  CAS  Google Scholar 

  • Robinson MM, Shah S, Tamot B, Pauls KP, Moffatt BA, Glick BR (2001) Reduced symptoms of Verticillium wilt in transgenic tomato expressing a bacterial ACC deaminase. Mol Plant Pathol 2:135–145

    CrossRef  Google Scholar 

  • Rolli E, Marasco R, Vigani G, Ettoumi B, Mapelli F, Deangelis ML, Gandolfi C, Casati E, Previtali F, Gerbino R, Cei FP, Borin S, Sorlini C, Zocchi G, Daffonchio D (2014) Improved plant resistance to drought is promoted by the root-associated microbiome as a water stress-dependent trait. Env Microbiol 17:316–331

    CrossRef  Google Scholar 

  • Sadrnia M, Maksimava N, Khromsova E, Stanislavich S, Owlia P, Arjomandzadegan M (2011) Study the effect of bacterial 1-Aminocyclopropane-1-Carboxylate deaminase (ACC deaminase) on resistance to salt stress in tomato plant. Fasci Biol 2:120–123

    Google Scholar 

  • Safronova VI, Stepanok VV, Engqvist GL, Alekseyev YV, Belimov AA (2006) Root-associated bacteria containing 1-aminocyclopropane-1-carboxylate deaminase improve growth and nutrient uptake by pea genotypes cultivated in cadmium supplemented soil. Biol Fert Soils 42:267–272

    CrossRef  CAS  Google Scholar 

  • Saha M, Maurya BR, Bahadur I, Kumar A, Meena VS (2016a) Can potassium-solubilising bacteria mitigate the potassium problems in India? In: Meena VS, Maurya BR, Verma JP, Meena RS (eds) Potassium solubilizing microorganisms for sustainable agriculture. Springer, New Delhi, pp 127–136. https://doi.org/10.1007/978-81-322-2776-2_9

    CrossRef  Google Scholar 

  • Saha M, Maurya BR, Meena VS, Bahadur I, Kumar A (2016b) Identification and characterization of potassium solubilizing bacteria (KSB) from Indo-Gangetic Plains of India. Biocatal Agric Biotechnol 7:202–209

    Google Scholar 

  • Sairam RK, Tyagi A (2004) Physiology and molecular biology of salinity stress tolerance in plants. Curr Sci 86:407–421

    CAS  Google Scholar 

  • Saleem M, Arshad M, Hussain S, Bhatti AS (2007) Perspective of plant growth promoting rhizobacteria (PGPR) containing ACC deaminase in stress agriculture. J Ind Microbiol Biotechnol 34:635–648

    CrossRef  PubMed  CAS  Google Scholar 

  • Samina M, Baig DN, Lazarovits G (2010) Genetic and phenotypic diversity of plant growth promoting Rhizobacteria isolated from sugarcane plants growing in Pakistan. J Microbiol Biotechnol 20(12):1614–1623

    Google Scholar 

  • Santos VB, Araujo SF, Leite LF, Nunes LA, Melo JW (2012) Soil microbial biomass and organic matter fractions during transition from conventional to organic farming systems. Geoderma 170:227–231

    CrossRef  CAS  Google Scholar 

  • Saravanakumar D, Samiyappan R (2007) ACC deaminase from Pseudomonas fluorescens mediated saline resistance in groundnut (Arachis hypogea) plants. J Appl Microbiol 102:1283–1292

    CrossRef  PubMed  CAS  Google Scholar 

  • Senthilkumar M, Paulraj S, Alagupalamuthirsolai M, Singh M, Singh J (2016) Synergistic effect of Mesorhizobium ciceri and 1-amino cyclopropane 1-carboxylate (ACC) deaminase producing rhizobacteria on chickpea growth and yield. J Food Legumes 29(1):37–42

    Google Scholar 

  • Sergeeva E, Shah S, Glick BR (2006) Growth of transgenic canola (Brassica napus cv. Westar) expressing a bacterial 1-aminocyclopropane-1-carboxylate (ACC) deaminase gene on high concentrations of salt. World J Microbiol Biotechnol 22:277–282

    CrossRef  CAS  Google Scholar 

  • Shah S, Li J, Moffatt BA, Glick BR (1998) Isolation and characterization of ACC deaminase genes from two different plant growth-promoting rhizobacteria. Can J Microbiol 44:833–843

    CrossRef  PubMed  CAS  Google Scholar 

  • Shaharoona B, Jamro GM, Zahir ZA, Arshad M, Memon KS (2007) Effectiveness of various Pseudomonas spp. and Burkholderia caryophylli containing ACC-deaminase for improving growth and yield of wheat (Triticum aestivum L.) J Microbiol Biotechnol 17:1300–1307

    PubMed  CAS  Google Scholar 

  • Shahzadi I, Khalidi A, Mahmood S, Arshad M, Mahmood T, Aziz I (2013) Effect of bacteria containing ACC deaminase on growth of wheat seedlings grown with chromium contaminated water. Pak J Bot 45:487–494

    Google Scholar 

  • Shakir MA, Bano A, Arshad M (2012) Rhizosphere bacteria containing ACC-deaminase conferred drought tolerance in wheat grown under semi-arid climate. Soil Environ 31(1):108–112

    CAS  Google Scholar 

  • Sharma P, Khanna V, Kumar P (2013) Efficacy of aminocyclopropane-1-carboxylic acid (ACC)-deaminase-producing rhizobacteria in ameliorating water stress in chickpea under axenic conditions. Afr J Microbiol Res 7:5749–5757

    CrossRef  CAS  Google Scholar 

  • Sharma A, Shankhdhar D, Shankhdhar SC (2016) Potassium-solubilizing microorganisms: mechanism and their role in potassium solubilization and uptake. In: Meena VS, Maurya BR, Verma JP, Meena RS (eds) Potassium solubilizing microorganisms for sustainable agriculture. Springer, New Delhi, pp 203–219. https://doi.org/10.1007/978-81-322-2776-2_15

    CrossRef  Google Scholar 

  • Shim J, Kim JW, Shea PJ, Oh BT (2015) IAA production by Bacillus sp. JH 2-2 promotes Indian mustard growth in the presence of hexavalent chromium. J Basic Microbiol 55:652–658

    CrossRef  PubMed  CAS  Google Scholar 

  • Shiu OY, Oetiker JH, Yip WK, Yang SF (1998) The promoter of LE-ACS7, an early flooding-induced 1-aminocyclopropane -1-carboxylate synthase gene of the tomato, is tagged by a Sol3 transposon. Proc Natl Acad Sci U S A 95:10334–10339

    CrossRef  PubMed  PubMed Central  CAS  Google Scholar 

  • Shrivastava M, Srivastava PC, D’Souza SF (2016) KSM soil diversity and mineral solubilization, in relation to crop production and molecular mechanism. In: Meena VS, Maurya BR, Verma JP, Meena RS (eds) Potassium solubilizing microorganisms for sustainable agriculture. Springer, New Delhi, pp 221–234. https://doi.org/10.1007/978-81-322-2776-2_16

    CrossRef  Google Scholar 

  • Siddikee MA, Chauhan PS, Anandham R, Han GH, Sa T (2010) Isolation, characterization, and use for plant growth promotion under salt stress, of ACC deaminase-producing halotolerant bacteria derived from coastal soil. J Microbiol Biotechnol 20(11):1577–1584

    CrossRef  PubMed  CAS  Google Scholar 

  • Siddikee MA, Glick BR, Chauhan PS, Yim WJ, Sa T (2011) Enhancement of growth and salt tolerance of red pepper seedlings (Capsicum annuum L.) by regulating stress ethylene synthesis with halotolerant bacteria containing 1-aminocyclopropane1-carboxylic acid deaminase activity. Plant Physiol Biochem 49(4):427–434

    CrossRef  PubMed  CAS  Google Scholar 

  • Sindhu SS, Parmar P, Phour M, Sehrawat A (2016) Potassium-solubilizing microorganisms (KSMs) and its effect on plant growth improvement. In: Meena VS, Maurya BR, Verma JP, Meena RS (eds) Potassium solubilizing microorganisms for sustainable agriculture. Springer, New Delhi, pp 171–185. https://doi.org/10.1007/978-81-322-2776-2_13

    CrossRef  Google Scholar 

  • Singh N, Kashyap S (2012) In-silico identification and characterization of 1-aminocyclopropane-1-carboxylate deaminase from Phytophthora sojae. J Mol Model 18:4101–4111

    CrossRef  PubMed  CAS  Google Scholar 

  • Singh NP, Singh RK, Meena VS, Meena RK (2015a) Can we use maize (Zea mays) rhizobacteria as plant growth promoter? Vegetos 28(1):86–99. https://doi.org/10.5958/2229-4473.2015.00012.9

    CrossRef  Google Scholar 

  • Singh RP, Shelke GM, Kumar A, Jha PN (2015b) Biochemistry and genetics of ACC deaminase: a weapon to “stress ethylene” produced in plants. Front Microbiol 6:937. https://doi.org/10.3389/fmicb.2015.00937

    CrossRef  PubMed  PubMed Central  Google Scholar 

  • Singh M, Dotaniya ML, Mishra A, Dotaniya CK, Regar KL, Lata M (2016) Role of biofertilizers in conservation agriculture. In: Bisht JK, Meena VS, Mishra PK, Pattanayak A (eds) Conservation agriculture: an approach to combat climate change in Indian Himalaya. Springer, Singapore, pp 113–134. https://doi.org/10.1007/978-981-10-2558-7_4

    CrossRef  Google Scholar 

  • Sisler EC, Serek M (1997) Inhibitors of ethylene responses in plants at the receptor level: recent developments. Physiol Plant 100:577–582

    CrossRef  CAS  Google Scholar 

  • Stearns JC, Shah S, Greenberg BM, Dixon DG, Glick BR (2005) Tolerance of transgenic canola expressing 1-aminocyclopropane-1-carboxylic acid deaminase to growth inhibition by nickel. Plant Physiol Biochem 43:701–708

    CrossRef  PubMed  CAS  Google Scholar 

  • Sugawara M, Okazaki S, Nukui N, Ezura H, Mitsui H, Minamisawa K (2006) Rhizobitoxine modulates plant-microbe interactions by ethylene inhibition. Biotechnol Adv 24:382–388

    CrossRef  PubMed  CAS  Google Scholar 

  • Sullivan JT, Trzebiatowski JR, Cruickshank RW, Gouzy J, Brown SD, Elliot RM, Fleetwood DJ, Mc Callum NG, Rossbach U, Stuart GS, Weaver JE, Webby RJ, De Bruijn FJ, Ronson CW (2002) Complete sequence analysis of the symbiosis island of Mesorhizobium loti strain R7A. J Bacteriol 184:3086–3095

    CrossRef  PubMed  PubMed Central  CAS  Google Scholar 

  • Sun Y, Cheng Z, Glick BR (2009) The presence of a 1-aminocyclopropane-1-carboxylate (ACC) deaminase deletion mutation alters the physiology of the endophytic plant growth-promoting bacterium Burkholderia phyto¢rmans PsJN. FEMS Microbiol Lett 296:131–136

    CrossRef  PubMed  CAS  Google Scholar 

  • Suttle JC, Kende H (1978) Ethylene and senescence in petals of Tradescantia. Plant Physiol 62:267–271

    CrossRef  PubMed  PubMed Central  CAS  Google Scholar 

  • Tak HI (2015) Modulation of growth, antioxidant system in seedling of mustard under different levels of nickel in adaptive response to metal resistant bacteria. Front Biol 10(3):272–278

    CrossRef  CAS  Google Scholar 

  • Tank N, Saraf M (2010) Salinity-resistant plant growth promoting rhizobacteria ameliorates sodium chloride stress on tomato plants. J Plant Interact 5:51–58

    CrossRef  CAS  Google Scholar 

  • Tarabily EKA (2008) Promotion of tomato (Lycopersicon esculentum Mill.) plant growth by rhizosphere competent 1-aminocyclopropane-1-carboxylic acid deaminase-producing streptomycete actinomycetes. Plant Soil 308:161–174

    CrossRef  CAS  Google Scholar 

  • Teotia P, Kumar V, Kumar M, Shrivastava N, Varma A (2016) Rhizosphere microbes: potassium solubilization and crop productivity-present and future aspects. In: Meena VS, Maurya BR, Verma JP, Meena RS (eds) Potassium solubilizing microorganisms for sustainable agriculture. Springer, New Delhi, pp 315–325. https://doi.org/10.1007/978-81-322-2776-2_22

    CrossRef  Google Scholar 

  • Tester M, Davenport R (2003) Na+ tolerance and Na+ transport in higher plants. Ann Bot 91(5):503–527

    CrossRef  PubMed  PubMed Central  CAS  Google Scholar 

  • Timmusk S, Islam A, Abd ED, Lucian C, Tanilas T, Kannaste A (2014) Drought-tolerance of wheat improved by rhizosphere bacteria from harsh environments: enhanced biomass production and reduced emissions of stress volatiles. PLoS One 9:1–13

    CrossRef  CAS  Google Scholar 

  • Tittabutr P, Piromyou P, Longtonglang A, Noisa-ngiam R, Boonkerd N, Teaumroong N (2013) Alleviation of the effect of environmental stresses using co-inoculation of mungbean by Bradyrhizobium and rhizobacteria containing stress-induced ACC deaminase enzyme. Soil Sci Plant Nutr 59:559–571

    CrossRef  CAS  Google Scholar 

  • Tittabutr P, Sripakdi S, Boonkerd N, Tanthanuch W, Minamisawa K, Teaumroong N (2015) Possible role of 1-Aminocyclopropane-1-carboxylate (ACC) deaminase activity of Sinorhizobium sp. BL3 on Symbiosis with Mung Bean and determinate nodule senescence. Microbes Environ 30(4):310–320

    CrossRef  PubMed  PubMed Central  Google Scholar 

  • Toklikishvili N, Dandurishvili N, Vainstein A, Tediashvili M, Giorgobiani N, Luried S, Szegedi E, Glick BR, Chernin L (2010) Inhibitory effect of ACC deaminase-producing bacteria on crown gall formation in tomato plants infected by Agrobacterium tumefaciens or A. vitis. Plant Pathol 59:1023–1030

    CrossRef  Google Scholar 

  • Trott S, Bauer R, Knackmuss HJ, Stolz A (2001) Genetic and biochemical characterization of an enantio selective amidase from Agrobacterium tumefaciens strain d3. Microbiology 147:1815–1824

    CrossRef  PubMed  CAS  Google Scholar 

  • Trung NT, Hieu HV, Thuan NH (2016) Screening of strong 1-Aminocyclopropane-1-carboxylate deaminase producing bacteria for improving the salinity tolerance of cowpea. Appl Micro 2(1):1–6

    Google Scholar 

  • Uchiumi T, Ohwada T, Itakura M, Mitsui H, Nukui N, Dawadi P, Kaneko T, Tabata S, Yokoyama T, Tejima K, Saeki K, Omori H, Hayashi M, Maekawa T, Sriprang R, Murooka Y, Tajima S, Simomura K, Nomura M, Suzuki A, Shimoda Y, Sioya K, Abe M, Minamisawa K (2004) Expression islands clustered on the symbiosis island of the Mesorhizobium loti genome. J Bacteriol 186:2439–2448

    CrossRef  PubMed  PubMed Central  CAS  Google Scholar 

  • Vaikuntapu PR, Dutta S, Samudrala RB, Rao VRVN, Kalam S, Podile AR (2014) Preferential promotion of Lycopersicon esculentum (tomato) growth by plant growth promoting bacteria associated with tomato. Indian J Microbiol 54(4):403–412

    CrossRef  PubMed  PubMed Central  CAS  Google Scholar 

  • VanLoon LC, Glick BR (2004) Increased plant fitness by rhizobacteria. In: Sandermann H (ed) Molecular ecotoxicology of plants. Springer, Berlin, pp 177–207

    CrossRef  Google Scholar 

  • Velazquez E, Silva LR, Ramírez-Bahena MH, Peix A (2016) Diversity of potassium-solubilizing microorganisms and their interactions with plants. In: Meena VS, Maurya BR, Verma JP, Meena RS (eds) Potassium solubilizing microorganisms for sustainable agriculture. Springer, New Delhi, pp 99–110. https://doi.org/10.1007/978-81-322-2776-2_7

    CrossRef  Google Scholar 

  • Verma R, Maurya BR, Meena VS (2014) Integrated effect of bio-organics with chemical fertilizer on growth, yield and quality of cabbage (Brassica oleracea var capitata). Indian J Agric Sci 84(8):914–919

    CAS  Google Scholar 

  • Verma JP, Jaiswa DK, Meena VS, Meena RS (2015a) Current need of organic farming for enhancing sustainable agriculture. J Clean Prod 102:545–547

    CrossRef  Google Scholar 

  • Verma JP, Jaiswal DK, Meena VS, Kumar A, Meena RS (2015b) Issues and challenges about sustainable agriculture production for management of natural resources to sustain soil fertility and health. J Clean Prod 107:793–794

    CrossRef  Google Scholar 

  • Viterbo A, Landau U, Kim S, Chernin L, Chet I (2010) Characterization of ACC deaminase from the biocontrol and plant growth-promoting agent Trichoderma asperellum T203. FEMS Microbiol Lett 305:42–48

    CrossRef  PubMed  CAS  Google Scholar 

  • Vivekanandan M, Karthik R, Leela A (2015) Improvement of crop productivity in saline soils through application of saline-tolerant rhizosphere bacteria – current perspective. Int J Adv Res 3(7):1273–1283

    CAS  Google Scholar 

  • Wang C, Knill E, Glick BR, Defago G (2000) Effect of transferring 1-aminocyclopropane-1-carboxylic acid (ACC) deaminase genes into Pseudomonas fluorescens strain CHA0 and its gacA derivative CHA96 on their growth-promoting and disease-suppressive capacities. Can J Microbiol 46:898–907

    CrossRef  PubMed  CAS  Google Scholar 

  • Wang S, Ouyang L, Ju X, Zhang L, Zhang Q, Li Y (2014) Survey of plant drought-resistance promoting bacteria from Populus euphratica tree living in arid area. Indian J Microbiol 54(4):419–426

    CrossRef  PubMed  PubMed Central  CAS  Google Scholar 

  • Wang X, Mavrodi DV, Ke L, Mavrodi OV, Yang M, Thomashow LS, Zheng N, Weller DM, Zhang J (2015) Biocontrol and plant growth-promoting activity of rhizobacteria from Chinese fields with contaminated soils. Microb Biotechnol 8(3):404–418

    CrossRef  PubMed  CAS  Google Scholar 

  • Wang Q, Dodd IC, Belimov AA, Jiang F (2016) Rhizosphere bacteria containing 1-aminocyclopropane-1- carboxylate deaminase increase growth and photosynthesis of pea plants under salt stress by limiting Na+ accumulation. Funct Plant Boil 43:161–172

    CrossRef  CAS  Google Scholar 

  • Wani PA, Khan MS, Zaidi A (2007) Impact of heavy metal toxicity on plant growth, symbiosis, seed yield and nitrogen and metal uptake in chickpea. Aust J Expt Agric 47:712–720

    CrossRef  CAS  Google Scholar 

  • Wani PA, Khan MS, Zaidi A (2008) Effect of heavy metal toxicity on growth, symbiosis, seed yield and metal uptake in pea grown in metal amended soil. Bull Environ Contam Toxicol 81(2):152–158

    CrossRef  PubMed  CAS  Google Scholar 

  • White PJ, Broadley MR (2001) Chloride in soils and its uptake and movement within the plant: a review. Ann Bot 88:967–988

    CrossRef  CAS  Google Scholar 

  • Woitke M, Junge H, Schnitzler WH (2004) Bacillus subtilis as growth promotor in hydrophonically grown tomatoes under saline conditions. Acta Hort 659:363–369

    CrossRef  Google Scholar 

  • Wu Z, Yue H, Lu J, Li C (2012) Characterization of rhizobacterial strain Rs-2 with ACC deaminase activity and its performance in promoting cotton growth under salinity stress. World J Microbiol Biotechnol 28:2383–2393

    CrossRef  PubMed  CAS  Google Scholar 

  • Xie ZP, Staehelin C, Wiemken A, Boller T (1996) Ethylene responsiveness of soybean cultivars characterized by leaf senescence, chitinase induction and nodulation. J Plant Physiol 149:690–694

    CrossRef  CAS  Google Scholar 

  • Yadav BK, Sidhu AS (2016) Dynamics of potassium and their bioavailability for plant nutrition. In: Meena VS, Maurya BR, Verma JP, Meena RS (eds) Potassium solubilizing microorganisms for sustainable agriculture. Springer, New Delhi, pp 187–201. https://doi.org/10.1007/978-81-322-2776-2_14

    CrossRef  Google Scholar 

  • Yan J, Smith MD, Glick BR, Liang Y (2014) Effects of ACC deaminase containing rhizobacteria on plant growth and expression of Toc GTPases in tomato (Solanum lycopersicum) under salt stress. Botany 92(11):775–781

    CrossRef  CAS  Google Scholar 

  • Yasin M, Munir I, Faisal M (2016) Can Bacillus spp. enhance K+ uptake in crop species. In: Meena VS, Maurya BR, Verma JP, Meena RS (eds) Potassium solubilizing microorganisms for sustainable agriculture. Springer, New Delhi, pp 163–170. https://doi.org/10.1007/978-81-322-2776-2_12

    CrossRef  Google Scholar 

  • Yim WJ, Chauhan PS, Madhaiyan M, Tipayno SC, Sa TM (2010) Plant growth promontory attributes by 1-aminocyclopropane-1-carboxylate (ACC) deaminase producing Methylobacterium oryzae strains isolated from rice. In: Gilkes RJ, Prakongkep N (eds) 19th World Congress of Soil Science, International Union of Soil Sciences, Brisbane

    Google Scholar 

  • Yim W, Seshadri S, Kim K, Lee G, Sa T (2013) Ethylene emission and PR protein synthesis in ACC deaminase producing Methylobacterium spp. inoculated tomato plants (Lycopersicon esculentum Mill.) challenged with Ralstonia solanacearum under greenhouse conditions. Plant Physiol Biochem 67:95–104

    CrossRef  PubMed  CAS  Google Scholar 

  • Youssef MMA, Eissa MFM (2014) Biofertilizers and their role in management of plant parasitic nematodes. A review E3. J Biotechnol Pharm Res 5:1–6

    Google Scholar 

  • Yue H, Mo W, Li C, Zheng Y, Li H (2007) The salt stress relief and growth promotion effect of RS-5 on cotton. Plant Soil 297:139–145

    CrossRef  CAS  Google Scholar 

  • Yuhashi K, Ichikawa N, Ezura H, Akao S, Minakawa Y, Nukui N, Yasuta T, Minamisawa K (2000) Rhizobitoxine production by Bradyrhizobium elkanii enhances nodulation and competitiveness on Macroptilium atropurpureum. Appl Environ Microbiol 66:2658–2663

    CrossRef  PubMed  PubMed Central  CAS  Google Scholar 

  • Zafar-ul-Hye M, Farooq HM, Zahir ZA, Hussain M, Hussain A (2014) Application of ACC-deaminase containing Rhizobacteria with fertilizer improves maize production under drought and salinity stress. Int J Agric Biol 16(3):591–596

    Google Scholar 

  • Zahedi H (2016) Growth-promoting effect of potassium-solubilizing microorganisms on some crop species. In: Meena VS, Maurya BR, Verma JP, Meena RS (eds) Potassium solubilizing microorganisms for sustainable agriculture. Springer, New Delhi, pp 31–42. https://doi.org/10.1007/978-81-322-2776-2_3

    CrossRef  Google Scholar 

  • Zahir ZA, Munir A, Asghar HN, Shahroona B, Arshad M (2008) Effectiveness of rhizobacteria containing ACC-deaminase for growth promotion of peas (Pisum sativum) under drought conditions. J Microbiol Biotechnol 18:958–963

    PubMed  CAS  Google Scholar 

  • Zahir ZA, Ghani U, Naveed M, Nadeem SM, Asghar HN (2009) Comparative effectiveness of Pseudomonas and Serratia sp. containing ACC deaminase for improving growth and yield of wheat (Triticum aestivum L.) under salt-stressed conditions. Arch Microbiol 191:415–424

    CrossRef  PubMed  CAS  Google Scholar 

  • Zhang YF, He LY, Chen ZJ, Zhang WH, Wang QY, Qian M, Sheng XF (2011) Characterization of lead-resistant and ACC deaminase-producing endophytic bacteria and their potential in promoting lead accumulation of rape. J Hazard Mater 186:1720–1725

    CrossRef  PubMed  CAS  Google Scholar 

Download references

Acknowledgements

The financial support for the first author provided by DST (SERB), New Delhi, India (NPDF/2016/00323 dt.05.07.2016) as providing National Post-Doctoral Fellowship, through the Department of Marine Science, Ballygunge Science College Campus, Calcutta University, WB, India, is gratefully acknowledged.

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Ghosh, P.K., De, T.K., Maiti, T.K. (2018). Role of ACC Deaminase as a Stress Ameliorating Enzyme of Plant Growth-Promoting Rhizobacteria Useful in Stress Agriculture: A Review. In: Meena, V. (eds) Role of Rhizospheric Microbes in Soil. Springer, Singapore. https://doi.org/10.1007/978-981-10-8402-7_3

Download citation

Publish with us

Policies and ethics