Advertisement

Spoof Surface Plasmon-Based Leaky-Wave Antenna (LWA)

  • Amin Kianinejad
Chapter
Part of the Springer Theses book series (Springer Theses)

Abstract

In this chapter, the spoof surface plasmon modes are implemented to design a single-layered leaky-wave antenna (SL-LWA). With a simple and single layer configuration, the proposed design offers all the advantageous features of the conventional leaky-wave antennas such as frequency scanning beam, forward, broadside and backward radiations as well as broadband operation for broadside radiation. With very low non-radiative power at the end of the antenna, the proposed leaky-wave antenna does not require any loading termination. In the next section, the radiation from the proposed single-layered leaky-wave antenna is studied. In Section II, a simple design procedure for the SL-LWA is proposed. In Section III, the radiation performance of the antenna is experimentally evaluated.

Antenna radiation patterns Beam steering Leaky wave antennas (LWAs) Periodic structures Plasmons 

References

  1. 1.
    W.W. Hansen, Radiating electromagnetic wave guide. US2402622 A, 1946Google Scholar
  2. 2.
    D.R. Jackson, C. Caloz, T. Itoh, Leaky-wave antennas. Proc. IEEE 100(7), 2194–2206 (2012)CrossRefGoogle Scholar
  3. 3.
    J.L. Gomez-Tornero, A.T. Martinez, D.C. Rebenaque, M. Gugliemi, A. Alvarez-Melcon, Design of tapered leaky-wave antennas in hybrid waveguide-planar technology for millimeter waveband applications. IEEE Trans. Antennas Propag. 53(8), 2563–2577 (2005)CrossRefGoogle Scholar
  4. 4.
    F. Xu, K. Wu, X. Zhang, Periodic leaky-wave antenna for millimeter wave applications based on substrate integrated waveguide. IEEE Trans. Antennas Propag. 58(2), 340–347 (2010)CrossRefGoogle Scholar
  5. 5.
    H.V. Nguyen, A. Parsa, C. Caloz, Power-recycling feedback system for maximization of leaky-wave antennas’ radiation efficiency. IEEE Trans. Microw. Theory Tech. 58(7), 1641–1650 (2010)CrossRefGoogle Scholar
  6. 6.
    Y.-D. Lin, J.-W. Sheen, Mode distinction and radiation-efficiency analysis of planar leaky-wave line source. IEEE Trans. Microw. Theory Tech. 45(10), 1672–1680 (1997)CrossRefGoogle Scholar
  7. 7.
    Y. Dong, T. Itoh, Substrate integrated composite right-/left-handed leaky-wave structure for polarization-flexible antenna application. IEEE Trans. Antennas Propag. 60(2), 760–771 (2012)CrossRefGoogle Scholar
  8. 8.
    L. Liu, C. Caloz, T. Itoh, Dominant mode leaky-wave antenna with backfire-to-endfire scanning capability. Electron. Lett. 38(23), 1414–1416 (2002)CrossRefGoogle Scholar
  9. 9.
    A. Alu, F. Bilotti, N. Engheta, L. Vegni, Subwavelength planar leaky-wave components with metamaterial bilayers. IEEE Trans. Antennas Propag. 55(3), 882–891 (2007)CrossRefGoogle Scholar
  10. 10.
    S.K. Podilchak, A.P. Freundorfer, Y. Antar, Planar leaky-wave antenna designs offering conical-sector beam scanning and broadside radiation using surface-wave launchers. IEEE Antennas Wirel. Propag. Lett. 7, 155–158 (2008)CrossRefGoogle Scholar
  11. 11.
    N. Nasimuddin, Z.N. Chen, X. Qing, Substrate integrated metamaterial-based leaky-wave antenna with improved boresight radiation bandwidth. IEEE Trans. Antennas Propag. 61(7), 3451–3457 (2013)CrossRefGoogle Scholar
  12. 12.
    H. Shi, X. Wei, Z. Zhao, X. Dong, Y. Lu, C. Du, A new surface wave antenna-based spoof surface plasmon mechanism. Microw. Opt. Technol. Lett. 52(10), 2179–2183 (2010)CrossRefGoogle Scholar
  13. 13.
    O. Quevedo-Teruel, Controlled radiation from dielectric slabs over spoof surface plasmon waveguides. Prog. Electromagn. Res. 140, 169–179 (2013)CrossRefGoogle Scholar
  14. 14.
    H. Yi, S.-W. Qu, X. Bai, Antenna array excited by spoof planar plasmonic waveguide. IEEE Antennas Wirel. Propag. Lett. 13, 1227–1230 (2014)CrossRefGoogle Scholar
  15. 15.
    S.-H. Kim et al., Subwavelength localization and toroidal dipole moment of spoof surface plasmon polaritons. Phys. Rev. B 91(3) (2015)Google Scholar
  16. 16.
    B. Xu et al., Tunable band-notched coplanar waveguide based on localized spoof surface plasmons. Opt. Lett. 40(20), 4683–4686 (2015)CrossRefGoogle Scholar
  17. 17.
    A. Kianinejad, Z.N. Chen, L. Zhang, W. Liu, C.W. Qiu, Spoof plasmon-based slow-wave excitation of dielectric resonator antennas. IEEE Trans. Antennas Propag. 64(6), 2094–2099 (2016)CrossRefGoogle Scholar
  18. 18.
    A. Kianinejad, Z.N. Chen, C.-W. Qiu, in Spoof Surface Plasmon-Based Leaky Wave Antennas. 2016 Asia-Pacific Microwave Conference (APMC), New Delhi (2016), pp. 1–3Google Scholar
  19. 19.
    A. Kianinejad, Z.N. Chen, C.W. Qiu, A single-layered spoof-plasmon-mode leaky wave antenna with consistent gain. IEEE Trans. Antennas Propag. 65(2), 681–687 (2017)CrossRefGoogle Scholar
  20. 20.
    A. Kianinejad, Z.N. Chen, C.W. Qiu, in Highly Radiative Symmetric Plasmonic Leaky Wave Antenna. 2017 International Workshop on Antenna Technology: Small Antennas, Innovative Structures, and Applications (iWAT) (2017), pp. 92–95Google Scholar
  21. 21.
    R. Janaswamy, D.H. Schaubert, Analysis of the tapered slot antenna. IEEE Trans. Antennas Propag. 35(9), 1058–1065 (1987)CrossRefGoogle Scholar
  22. 22.
    K.S. Yngvesson, T.L. Korzeniowski, Y.-S. Kim, E.L. Kollberg, J.F. Johansson, The tapered slot antenna-a new integrated element for millimeter-wave applications. IEEE Trans. Microw. Theory Tech. 37(2), 365–374 (1989)CrossRefGoogle Scholar

Copyright information

© Springer Nature Singapore Pte Ltd. 2018

Authors and Affiliations

  1. 1.Department of Electrical and Computer EngineeringNational University of SingaporeSingaporeSingapore

Personalised recommendations