Spoof Surface Plasmon Modes Modeling Using Circuit Elements

Chapter
Part of the Springer Theses book series (Springer Theses)

Abstract

One of the important features of the SSP modes is their confinement, which is directly related to their moment. In the first section of this chapter, the effects of different geometrical parameters on the confinements of the modes are discussed. In the second section of this chapter, we propose a model that offers a general understanding of SSP-based transmission lines, and facilitates further advanced engineering designs and optimizations with desired performance.

Equivalent circuits Impedance matching Mode matching Periodic structures Plasmons 

References

  1. 1.
    A. Kianinejad, Z.N. Chen, C.W. Qiu, Low-loss spoof surface plasmon slow-wave transmission lines with compact transition and high isolation. IEEE Trans. Microw. Theory Tech. 64(10), 3078–3086 (2016)CrossRefGoogle Scholar
  2. 2.
    D.M. Pozar, Microwave Engineering, 3rd edn. (Wiley, New York, 2004)Google Scholar
  3. 3.
    A. Kianinejad, Z.N. Chen, C.-W. Qiu, Design and modeling of spoof surface plasmon modes-based microwave slow-wave transmission line. IEEE Trans. Microw. Theory Tech. 63(9), 1817–1825 (2015)CrossRefGoogle Scholar
  4. 4.
    X. Shen, T.J. Cui, D. Martin-Cano, F.J. Garcia-Vidal, Conformal surface plasmons propagating on ultrathin and flexible films. Proc. Natl. Acad. Sci. 110(1), 40–45 (2013)CrossRefGoogle Scholar
  5. 5.
    Z. Piatek, B. Baron, T. Szczegielniak, D. Kusiak, A. Pasierbek, Self inductance of long conductor of rectangular cross section. Przeglad Elektrotechniczny Electr. Rev. 88(8), 323–326 (2012)Google Scholar
  6. 6.
    J.D. Jackson, Classical Electrodynamics, vol. 3 (New York: Wiley, 1975), p. 128, problem 3.3Google Scholar
  7. 7.
    H.F. Ma, X. Shen, Q. Cheng, W.X. Jiang, T.J. Cui, Broadband and high-efficiency conversion from guided waves to spoof surface plasmon polaritons. Laser Photonics Rev. 8(1), 146–151 (2013)CrossRefGoogle Scholar
  8. 8.
    G.S. Kong, H.F. Ma, B.G. Cai, T.J. Cui, Continuous leaky-wave scanning using periodically modulated spoof plasmonic waveguide. Sci. Rep. 6, 29600 (2016)CrossRefGoogle Scholar
  9. 9.
    B.C. Pan, Z. Liao, J. Zhao, T.J. Cui, Controlling rejections of spoof surface plasmon polaritons using metamaterial particles. Opt. Express 22(11), 13940–13950 (2014)CrossRefGoogle Scholar
  10. 10.
    Y.J. Zhou, B.J. Yang, Planar spoof plasmonic ultra-wideband filter based on low-loss and compact terahertz waveguide corrugated with dumbbell grooves. Appl. Opt. 54(14), 4529–4533 (2015)CrossRefGoogle Scholar
  11. 11.
    B. Xu, Z. Li, L. Liu, J. Xu, C. Chen, C. Gu, Bandwidth tunable microstrip band-stop filters based on localized spoof surface plasmons. JOSA B 33(7), 1388–1391 (2016)CrossRefGoogle Scholar
  12. 12.
    J.Y. Yin, J. Ren, H.C. Zhang, Q. Zhang, T.J. Cui, Capacitive-coupled series spoof surface plasmon polaritons. Sci. Rep. 6, 24605 (2016)CrossRefGoogle Scholar
  13. 13.
    A. Kianinejad, Z.N. Chen, C.-W. Qiu, Full modeling, loss reduction and mutual coupling control of spoof surface plasmon based meander slow wave transmission lines. IEEE Trans. Microw. Theory Tech. (Submitted)Google Scholar
  14. 14.
    A. Kianinejad, Z.N. Chen, C.-W. Qiu, Design and modeling of low-loss symmetric slow-wave transmission lines, in 2015 Asia-Pacific Microwave Conference (APMC), vol. 2 (2015), pp. 1–3Google Scholar

Copyright information

© Springer Nature Singapore Pte Ltd. 2018

Authors and Affiliations

  1. 1.Department of Electrical and Computer EngineeringNational University of SingaporeSingaporeSingapore

Personalised recommendations