Advertisement

Introduction

  • Amin Kianinejad
Chapter
Part of the Springer Theses book series (Springer Theses)

Abstract

Nowadays, electronic circuits and systems are developing fast and becoming an indispensable part of our daily life, while the compactness still remains the formidable challenge of integrated circuits. Recently, the Spoof Surface Plasmon (SSP) modes have been proposed as a novel platform for highly compact electronic circuits. Despite the vast number of research efforts in this area, still a systematic design method for plasmonic circuits is strongly demanded. This chapter reviews the recent advances in the area of spoof surface plasmons.

Surface plasmons Spoof surface plasmons Single line transmission lines Waveguide Antenna 

References

  1. 1.
    J.B. Pendry, L. Martin-Moreno, F.J. Garcia-Vidal, Mimicking surface plasmons with structured surfaces. Science 305(5685), 847–848 (2004)CrossRefGoogle Scholar
  2. 2.
    F.F. Qin, J.J. Xiao, Z.Z. Liu, Q. Zhang, Multiple fano-like transmission mediated by multimode interferences in spoof surface plasmon cavity-waveguide coupling system. IEEE Trans. Microw. Theory Tech. 64(4), 1186–1194 (2016)CrossRefGoogle Scholar
  3. 3.
    J.R. Middendorf, J.S. Cetnar, J. Owsley, E.R. Brown, High fill-factor substrate-based wire-grid polarizers with high extinction ratios. IEEE Trans. Terahertz Sci. Technol. 4(3), 376–382 (2014)CrossRefGoogle Scholar
  4. 4.
    M. Aghadjani, P. Mazumder, THz polarizer controller based on cylindrical spoof surface plasmon polariton (C-SSPP). IEEE Trans. Terahertz Sci. Technol. 5(4), 556–563 (2015)CrossRefGoogle Scholar
  5. 5.
    W.L. Barnes, A. Dereux, T.W. Ebbesen, Surface plasmon subwavelength optics. Nature 424(6950), 824–830 (2003)CrossRefGoogle Scholar
  6. 6.
    J.M. Pitarke, V.M. Silkin, E.V. Chulkov, P.M. Echenique, Theory of surface plasmons and surface-plasmon polaritons. Rep. Prog. Phys. 70(1), 1 (2007)CrossRefGoogle Scholar
  7. 7.
    T.W. Ebbesen, H.J. Lezec, H.F. Ghaemi, T. Thio, P.A. Wolff, Extraordinary optical transmission through sub-wavelength hole arrays. Nature 391(6668), 667–669 (1998)CrossRefGoogle Scholar
  8. 8.
    K.F. MacDonald, Z.L. Sámson, M.I. Stockman, N.I. Zheludev, Ultrafast active plasmonics. Nat. Photonics 3(1), 55–58 (2009)CrossRefGoogle Scholar
  9. 9.
    W.-H. Tsai, Y.-C. Tsao, H.-Y. Lin, B.-C. Sheu, Cross-point analysis for a multimode fiber sensor based on surface plasmon resonance. Opt. Lett. 30(17), 2209–2211 (2005)CrossRefGoogle Scholar
  10. 10.
    N. Fang, H. Lee, C. Sun, X. Zhang, Sub–diffraction-limited optical imaging with a silver superlens. Science 308(5721), 534–537 (2005)CrossRefGoogle Scholar
  11. 11.
    S. Kawata, Y. Inouye, P. Verma, Plasmonics for near-field nano-imaging and superlensing. Nat. Photonics 3(7), 388–394 (2009)CrossRefGoogle Scholar
  12. 12.
    M. Ozaki, J. Kato, S. Kawata, Surface-plasmon holography with white-light illumination. Science 332(6026), 218–220 (2011)CrossRefGoogle Scholar
  13. 13.
    E. Ozbay, Plasmonics: merging photonics and electronics at nanoscale dimensions. Science 311(5758), 189–193 (2006)CrossRefGoogle Scholar
  14. 14.
    W. Cai, W. Shin, S. Fan, M.L. Brongersma, Elements for plasmonic nanocircuits with three-dimensional slot waveguides. Adv. Mater. 22(45), 5120–5124 (2010)CrossRefGoogle Scholar
  15. 15.
    A. Polman, H.A. Atwater, Photonic design principles for ultrahigh-efficiency photovoltaics. Nat. Mater. 11(3), 174–177 (2012)CrossRefGoogle Scholar
  16. 16.
    J.A. Conway, S. Sahni, T. Szkopek, Plasmonic interconnects versus conventional interconnects: a comparison of latency, crosstalk and energy costs. Opt. Express 15(8), 4474–4484 (2007)CrossRefGoogle Scholar
  17. 17.
    D.K. Gramotnev, S.I. Bozhevolnyi, Plasmonics beyond the diffraction limit. Nat. Photonics 4(2), 83–91 (2010)CrossRefGoogle Scholar
  18. 18.
    A. Sommerfeld, Ueber die fortpflanzung elektrodynamischer wellen längs eines drahtes. Ann. Phys. 303(2), 233–290 (1899)CrossRefzbMATHGoogle Scholar
  19. 19.
    G. Goubau, Surface waves and their application to transmission lines. J. Appl. Phys. 21(11), 1119–1128 (1950)MathSciNetCrossRefzbMATHGoogle Scholar
  20. 20.
    A.F. Harvey, Periodic and guiding structures at microwave frequencies. IRE Trans. Microw. Theory Tech. 8(1), 30–61 (1960)CrossRefGoogle Scholar
  21. 21.
    R. Ulrich, M. Tacke, Submillimeter waveguiding on periodic metal structure. Appl. Phys. Lett. 22(5), 251–253 (1973)CrossRefGoogle Scholar
  22. 22.
    G. Goubau, On the excitation of surface waves. Proc. IRE 40(7), 865–868 (1952)CrossRefGoogle Scholar
  23. 23.
    A.P. Hibbins, J.R. Sambles, C.R. Lawrence, Grating-coupled surface plasmons at microwave frequencies. J. Appl. Phys. 86(4), 1791–1795 (1999)CrossRefGoogle Scholar
  24. 24.
    M.J. Lockyear, A.P. Hibbins, J.R. Sambles, C.R. Lawrence, Enhanced microwave transmission through a single subwavelength aperture surrounded by concentric grooves. J. Opt. Pure Appl. Opt. 7(2), S152 (2005)CrossRefGoogle Scholar
  25. 25.
    H. Caglayan, I. Bulu, E. Ozbay, Extraordinary grating-coupled microwave transmission through a subwavelength annular aperture. Opt. Express 13(5), 1666–1671 (2005)CrossRefGoogle Scholar
  26. 26.
    A.P. Hibbins, J.R. Sambles, C.R. Lawrence, Excitation of remarkably nondispersive surface plasmons on a nondiffracting, dual-pitch metal grating. Appl. Phys. Lett. 80(13), 2410–2412 (2002)CrossRefGoogle Scholar
  27. 27.
    H.E. Went, J.R. Sambles, Resonantly coupled surface plasmon polaritons in the grooves of very deep highly blazed zero-order metallic gratings at microwave frequencies. Appl. Phys. Lett. 79(5), 575–577 (2001)CrossRefGoogle Scholar
  28. 28.
    S.S. Akarca-Biyikli, I. Bulu, E. Ozbay, Enhanced transmission of microwave radiation in one-dimensional metallic gratings with subwavelength aperture. J. Appl. Phys. 85, 1098–1100 (2004)Google Scholar
  29. 29.
    A.K. Sarychev, V.A. Podolskiy, A.M. Dykhne, V.M. Shalaev, Resonance transmittance through a metal film with subwavelength holes. IEEE J. Quantum Electron. 38(7), 956–963 (2002)CrossRefGoogle Scholar
  30. 30.
    J.G. Rivas, C. Schotsch, P.H. Bolivar, H. Kurz, Enhanced transmission of THz radiation through subwavelength holes. Phys. Rev. B 68(20), 201306 (2003)CrossRefGoogle Scholar
  31. 31.
    A.P. Hibbins, B.R. Evans, J.R. Sambles, Experimental verification of designer surface plasmons. Science 308(5722), 670–672 (2005)CrossRefGoogle Scholar
  32. 32.
    S.A. Maier, S.R. Andrews, L. Martin-Moreno, F.J. Garcia-Vidal, Terahertz surface plasmon-polariton propagation and focusing on periodically corrugated metal wires. Phys. Rev. Lett. 97(17), 176805 (2006)CrossRefGoogle Scholar
  33. 33.
    C.R. Williams, S.R. Andrews, S.A. Maier, A.I. Fernández-Domínguez, L. Martín-Moreno, F.J. García-Vidal, Highly confined guiding of terahertz surface plasmon polaritons on structured metal surfaces. Nat. Photonics 2(3), 175–179 (2008)CrossRefGoogle Scholar
  34. 34.
    N. Yu et al., Designer spoof surface plasmon structures collimate terahertz laser beams. Nat. Mater. 9(9), 730–735 (2010)CrossRefGoogle Scholar
  35. 35.
    D. Martin-Cano, M.L. Nesterov, A.I. Fernandez-Dominguez, F.J. Garcia-Vidal, L. Martin-Moreno, E. Moreno, Domino plasmons for subwavelength terahertz circuitry. Opt. Express 18(2), 754–764 (2010)CrossRefGoogle Scholar
  36. 36.
    Y.J. Zhou, Q. Jiang, T.J. Cui, Bidirectional bending splitter of designer surface plasmons. Appl. Phys. Lett. 99(11), 111904 (2011)CrossRefGoogle Scholar
  37. 37.
    Q. Gan, Y. Gao, K. Wagner, D. Vezenov, Y.J. Ding, F.J. Bartoli, Experimental verification of the rainbow trapping effect in adiabatic plasmonic gratings. Proc. Natl. Acad. Sci. 108(13), 5169–5173 (2011)CrossRefGoogle Scholar
  38. 38.
    G. Kumar, S. Pandey, A. Cui, A. Nahata, Planar plasmonic terahertz waveguides based on periodically corrugated metal films. New J. Phys. 13(3), 033024 (2011)CrossRefGoogle Scholar
  39. 39.
    M. Navarro-Cía, M. Beruete, S. Agrafiotis, F. Falcone, M. Sorolla, S.A. Maier, Broadband spoof plasmons and subwavelength electromagnetic energy confinement on ultrathin metafilms. Opt. Express 17(20), 18184–18195 (2009)CrossRefGoogle Scholar
  40. 40.
    X. Shen, T.J. Cui, D. Martin-Cano, F.J. Garcia-Vidal, Conformal surface plasmons propagating on ultrathin and flexible films. Proc. Natl. Acad. Sci. 110(1), 40–45 (2013)CrossRefGoogle Scholar
  41. 41.
    G. Goubau, Open wire lines. IRE Trans. Microw. Theory Tech. 4(4), 197–200 (1956)CrossRefGoogle Scholar
  42. 42.
    A. Treizebré, T. Akalin, B. Bocquet, Planar excitation of Goubau transmission lines for THz bioMEMS. IEEE Microwave Wirel. Compon. Lett. 15(12), 886–888 (2005)CrossRefGoogle Scholar
  43. 43.
    T. Akalin, A. Treizebré, B. Bocquet, Single-wire transmission lines at terahertz frequencies. IEEE Trans. Microw. Theory Tech. 54(6), 2762–2767 (2006)CrossRefGoogle Scholar
  44. 44.
    T. Akalin, E. Peytavit, J.F. Lampin, THz long range plasmonic waveguide in membrane topology, in 33rd International Conference on Infrared, Millimeter and Terahertz Waves, 2008. IRMMW-THz 2008 (2008), pp. 1–2Google Scholar
  45. 45.
    T. Akalin, W. Padilla, Plasmonic waveguides and metamaterial components at terahertz frequencies, in 2009 Asia Pacific Microwave Conference, Singapore (2009), pp. 2444–2446Google Scholar
  46. 46.
    Y. Xu, C. Nerguizian, R.G. Bosisio, Wideband planar Goubau line integrated circuit components at millimetre waves. IET Microwaves Antennas Propag. 5(8), 882–885 (2011)CrossRefGoogle Scholar
  47. 47.
    J. Emond et al., A low-loss planar goubau line and a coplanar-PGL transition on high-resistivity silicon substrate in the 57–64 GHz band. Microw. Opt. Technol. Lett. 54(1), 164–168 (2012)CrossRefGoogle Scholar
  48. 48.
    S. Laurette, A. Treizebre, B. Bocquet, Corrugated Goubau lines to slow down and confine THz waves. IEEE Trans. Terahertz Sci. Technol. 2(3), 340–344 (2012)CrossRefGoogle Scholar
  49. 49.
    D. Sanchez-Escuderos, M. Ferrando-Bataller, J.I. Herranz, M. Cabedo-Fabres, Periodic leaky-wave antenna on planar Goubau line at millimeter-wave frequencies. IEEE Antennas Wirel. Propag. Lett. 12, 1006–1009 (2013)CrossRefGoogle Scholar
  50. 50.
    D. Martin-Cano, O. Quevedo-Teruel, E. Moreno, L. Martin-Moreno, F.J. Garcia-Vidal, Waveguided spoof surface plasmons with deep-subwavelength lateral confinement. Opt. Lett. 36(23), 4635–4637 (2011)CrossRefGoogle Scholar
  51. 51.
    M. Navarro-Cía, M. Beruete, M. Sorolla, S.A. Maier, Enhancing the dual-band guiding capabilities of coaxial spoof plasmons via use of transmission line concepts. Plasmonics 6(2), 295–299 (2011)CrossRefGoogle Scholar
  52. 52.
    S. Pandey, B. Gupta, A. Nahata, Terahertz plasmonic waveguides created via 3D printing. Opt. Express 21(21), 24422–24430 (2013)CrossRefGoogle Scholar
  53. 53.
    L. Liu et al., Multi-channel composite spoof surface plasmon polaritons propagating along periodically corrugated metallic thin films. J. Appl. Phys. 116(1), 013501 (2014)CrossRefGoogle Scholar
  54. 54.
    B.C. Pan, Z. Liao, J. Zhao, T.J. Cui, Controlling rejections of spoof surface plasmon polaritons using metamaterial particles. Opt. Express 22(11), 13940–13950 (2014)CrossRefGoogle Scholar
  55. 55.
    X. Gao et al., Ultrathin dual-band surface plasmonic polariton waveguide and frequency splitter in microwave frequencies. Appl. Phys. Lett. 102, 151912 (2013)CrossRefGoogle Scholar
  56. 56.
    X. Liu, Y. Feng, K. Chen, B. Zhu, J. Zhao, T. Jiang, Planar surface plasmonic waveguide devices based on symmetric corrugated thin film structures. Opt. Express 22(17), 20107–20116 (2014)CrossRefGoogle Scholar
  57. 57.
    X. Gao, L. Zhou, Z. Liao, H.F. Ma, T.J. Cui, An ultra-wideband surface plasmonic filter in microwave frequency. Appl. Phys. Lett. 104(19), 191603 (2014)CrossRefGoogle Scholar
  58. 58.
    J.Y. Yin, J. Ren, H.C. Zhang, Q. Zhang, T.J. Cui, Capacitive-coupled series spoof surface plasmon polaritons. Sci. Rep. 6, 24605 (2016)CrossRefGoogle Scholar
  59. 59.
    B. Xu, Z. Li, L. Liu, J. Xu, C. Chen, C. Gu, Bandwidth tunable microstrip band-stop filters based on localized spoof surface plasmons. JOSA B 33(7), 1388–1391 (2016)CrossRefGoogle Scholar
  60. 60.
    H.C. Zhang, S. Liu, X. Shen, L.H. Chen, L. Li, T. J. Cui, Broadband amplification of spoof surface plasmon polaritons at microwave frequencies. Laser Photonics Rev. 9(1), 83–90 (2014)Google Scholar
  61. 61.
    X. Liu, Y. Feng, B. Zhu, J. Zhao, T. Jiang, High-order modes of spoof surface plasmonic wave transmission on thin metal film structure. Opt. Express 21(25), 31155–31165 (2013)CrossRefGoogle Scholar
  62. 62.
    Y. Liang et al., On-chip sub-terahertz surface plasmon polariton transmission lines with mode converter in CMOS. Sci. Rep. 6, 30063 (2016)CrossRefGoogle Scholar
  63. 63.
    H. Shi, X. Wei, Z. Zhao, X. Dong, Y. Lu, C. Du, A new surface wave antenna-based spoof surface plasmon mechanism. Microw. Opt. Technol. Lett. 52(10), 2179–2183 (2010)CrossRefGoogle Scholar
  64. 64.
    J.J. Xu, H.C. Zhang, Q. Zhang, T.J. Cui, Efficient conversion of surface-plasmon-like modes to spatial radiated modes. Appl. Phys. Lett. 106(2), 021102 (2015)CrossRefGoogle Scholar
  65. 65.
    Huan Yi, Qu Shi-Wei, Xue Bai, Antenna array excited by spoof planar plasmonic waveguide. IEEE Antennas Wirel. Propag. Lett. 13, 1227–1230 (2014)CrossRefGoogle Scholar
  66. 66.
    O. Quevedo-Teruel, Controlled radiation from dielectric slabs over spoof surface plasmon waveguides. Prog. Electromagn. Res. 140, 169–179 (2013)CrossRefGoogle Scholar
  67. 67.
    J.J. Wu et al., High-directivity radiation based on the leaky mode of spoof surface plasmon polaritons. IET Microwaves Antennas Propag. 8(13), 1075–1079 (2014)CrossRefGoogle Scholar
  68. 68.
    S.-H. Kim et al., Subwavelength localization and toroidal dipole moment of spoof surface plasmon polaritons. Phys. Rev. B 91(3), 035116 (2015)Google Scholar
  69. 69.
    B. Xu et al., Tunable band-notched coplanar waveguide based on localized spoof surface plasmons. Opt. Lett. 40(20), 4683–4686 (2015)CrossRefGoogle Scholar
  70. 70.
    J.Y. Yin, H.C. Zhang, Y. Fan, T.J. Cui, Direct radiations of surface plasmon polariton waves by gradient groove depth and flaring metal structure. IEEE Antennas Wirel. Propag. Lett. 15, 865–868 (2016)Google Scholar

Copyright information

© Springer Nature Singapore Pte Ltd. 2018

Authors and Affiliations

  1. 1.Department of Electrical and Computer EngineeringNational University of SingaporeSingaporeSingapore

Personalised recommendations