Theoretical and Applied Epigenetics in Plants

  • Yuhya Wakasa
  • Taiji Kawakatsu
  • Fumio Takaiwa


Artificial regulation of gene expression through RNA-directed DNA methylation (RdDM)-mediated epigenome editing is one the most important and attractive next-generation technologies for plant trait improvement, often called “new plant breeding techniques” (NPBTs). RdDM can induce transcriptional gene silencing (TGS) of a target gene via modification of the cytosine methylation levels of its promoter region; thus, RdDM is useful as a method for suppression of gene expression without changing the genomic DNA sequence. Likewise, several types of strict epigenetic regulation occur at both the DNA and chromatin levels under normal growth conditions in plants. Recent studies have revealed genome-wide and organ-specific landscapes of epigenetic modifications and their close relationship to plant growth regulation. Therefore, understanding recent findings concerning epigenetic regulation in plants is very important to the future application of epigenome editing in plant breeding. In this chapter, we illustrate several aspects of theoretical and applied epigenetics in plants through discussion of recent studies.


Epigenetics Chromatin Histone Methylation New plant breeding techniques RNA-directed DNA methylation Transcriptional gene silencing 


  1. Ach RA, Taranto P, Gruissem W (1997) A conserved family of WD-40 proteins binds to the retinoblastoma protein in both plants and animals. Plant Cell 9:1595–1606PubMedPubMedCentralCrossRefGoogle Scholar
  2. Adli M, Bernstein BE (2011) Whole-genome chromatin profiling from limited numbers of cells using nano-ChIP-seq. Nat Protoc 6:1656–1668PubMedPubMedCentralCrossRefGoogle Scholar
  3. Aubert D, Chen L, Moon YH, Martin D, Castle LA, Yang CH, Sung ZR (2001) EMF1, a novel protein involved in the control of shoot architecture and flowering in Arabidopsis. Plant Cell 13:1865–1875PubMedPubMedCentralCrossRefGoogle Scholar
  4. Ausin I, Feng S, Yu C, Liu W, Kuo HY, Jacobsen EL, Zhai J, Gallego-Bartolome J, Wang L, Egertsdotter U, Street NR, Jacobsen SE, Wang H (2016) DNA methylome of the 20-gigabase Norway spruce genome. Proc Natl Acad Sci U S A 113:E8106–E8113PubMedPubMedCentralCrossRefGoogle Scholar
  5. Bai S, Kasai A, Yamada K, Li T, Harada T (2011) A mobile signal transported over a long distance induces systemic transcriptional gene silencing in a grafted partner. J Exp Bot 62:4561–4570PubMedPubMedCentralCrossRefGoogle Scholar
  6. Barski A, Cuddapah S, Cui K, Roh TY, Schones DE, Wang Z, Wei G, Chepelev I, Zhao K (2007) High-resolution profiling of histone methylations in the human genome. Cell 129:823–837PubMedCrossRefGoogle Scholar
  7. Bartee L, Malagnac F, Bender J (2001) Arabidopsis cmt3 chromomethylase mutations block non-CG methylation and silencing of an endogenous gene. Genes Dev 15:1753–1758PubMedPubMedCentralCrossRefGoogle Scholar
  8. Benhamed M, Bertrand C, Servet C, Zhou DX (2006) Arabidopsis GCN5, HD1, and TAF1/HAF2 interact to regulate histone acetylation required for light-responsive gene expression. Plant Cell 18:2893–2903PubMedPubMedCentralCrossRefGoogle Scholar
  9. Berr A, Xu L, Gao J, Cognat V, Steinmetz A, Dong A, Shen WH (2009) SET DOMAIN GROUP25 encodes a histone methyltransferase and is involved in FLOWERING LOCUS C activation and repression of flowering. Plant Physiol 151:1476–1485PubMedPubMedCentralCrossRefGoogle Scholar
  10. Berr A, McCallum EJ, Ménard R, Meyer D, Fuchs J, Dong A, Shen WH (2010) Arabidopsis SET DOMAIN GROUP2 is required for H3K4 trimethylation and is crucial for both sporophyte and gametophyte development. Plant Cell 22:3232–3248PubMedPubMedCentralCrossRefGoogle Scholar
  11. Bewick AJ, Ji L, Niederhuth CE, Willing EM, Hofmeister BT, Shi X, Wang L, Lu Z, Rohr NA, Hartwig B, Kiefer C, Deal RB, Schmutz J, Grimwood J, Stroud H, Jacobsen SE, Schneeberger K, Zhang X, Schmitz RJ (2016) On the origin and evolutionary consequences of gene body DNA methylation. Proc Natl Acad Sci U S A 113:9111–9116PubMedPubMedCentralCrossRefGoogle Scholar
  12. Blackledge NP, Farcas AM, Kondo T, King HW, McGouran JF, Hanssen LL, Ito S, Cooper S, Kondo K, Koseki Y, Ishikura T, Long HK, Sheahan TW, Brockdorff N, Kessler BM, Koseki H, Klose RJ (2014) Variant PRC1 complex-dependent H2A ubiquitylation drives PRC2 recruitment and polycomb domain formation. Cell 157:1445–1459PubMedPubMedCentralCrossRefGoogle Scholar
  13. Bond DM, Baulcombe DC (2015) Epigenetic transitions leading to heritable, RNA-mediated de novo silencing in Arabidopsis thaliana. Proc Natl Acad Sci U S A 112:917–922PubMedPubMedCentralCrossRefGoogle Scholar
  14. Boyle AP, Davis S, Shulha HP, Meltzer P, Margulies EH, Weng Z, Furey TS, Crawford GE (2008) High-resolution mapping and characterization of open chromatin across the genome. Cell 132:311–322PubMedPubMedCentralCrossRefGoogle Scholar
  15. Brind’Amour J, Liu S, Hudson M, Chen C, Karimi MM, Lorincz MC (2015) An ultra-low-input native ChIP-seq protocol for genome-wide profiling of rare cell populations. Nat Commun 6:6033PubMedCrossRefGoogle Scholar
  16. Buenrostro JD, Giresi PG, Zaba LC, Chang HY, Greenleaf WJ (2013) Transposition of native chromatin for fast and sensitive epigenomic profiling of open chromatin, DNA-binding proteins and nucleosome position. Nat Methods 10:1213–1218PubMedPubMedCentralCrossRefGoogle Scholar
  17. Calarco JP, Borges F, Donoghue MT, Van Ex F, Jullien PE, Lopes T, Gardner R, Berger F, Feijo JA, Becker JD, Martienssen RA (2012) Reprogramming of DNA methylation in pollen guides epigenetic inheritance via small RNA. Cell 151:194–205PubMedPubMedCentralCrossRefGoogle Scholar
  18. Calonje M, Sanchez R, Chen L, Sung ZR (2008) EMBRYONIC FLOWER1 participates in polycomb group-mediated AG gene silencing in Arabidopsis. Plant Cell 20:277–291PubMedPubMedCentralCrossRefGoogle Scholar
  19. Cao X, Jacobsen SE (2002) Role of the arabidopsis DRM methyltransferases in de novo DNA methylation and gene silencing. Curr Biol 12:1138–1144PubMedCrossRefGoogle Scholar
  20. Cartagena JA, Matsunaga S, Seki M, Kurihara D, Yokoyama M, Shinozaki K, Fujimoto S, Azumi Y, Uchiyama S, Fukui K (2008) The Arabidopsis SDG4 contributes to the regulation of pollen tube growth by methylation of histone H3 lysines 4 and 36 in mature pollen. Dev Biol 315:355–368PubMedCrossRefGoogle Scholar
  21. Chanvivattana Y, Bishopp A, Schubert D, Stock C, Moon YH, Sung ZR, Goodrich J (2004) Interaction of Polycomb-group proteins controlling flowering in Arabidopsis. Development 131:5263–5276PubMedCrossRefGoogle Scholar
  22. Charron JB, He H, Elling AA, Deng XW (2009) Dynamic landscapes of four histone modifications during deetiolation in Arabidopsis. Plant Cell 21:3732–3748PubMedPubMedCentralCrossRefGoogle Scholar
  23. Choi Y, Gehring M, Johnson L, Hannon M, Harada JJ, Goldberg RB, Jacobsen SE, Fischer RL (2002) DEMETER, a DNA glycosylase domain protein, is required for endosperm gene imprinting and seed viability in Arabidopsis. Cell 110:33–42PubMedCrossRefGoogle Scholar
  24. Cokus SJ, Feng S, Zhang X, Chen Z, Merriman B, Haudenschild CD, Pradhan S, Nelson SF, Pellegrini M, Jacobsen SE (2008) Shotgun bisulphite sequencing of the Arabidopsis genome reveals DNA methylation patterning. Nature 452:215–219PubMedPubMedCentralCrossRefGoogle Scholar
  25. Coleman-Derr D, Zilberman D (2012) Deposition of histone variant H2A.Z within gene bodies regulates responsive genes. PLoS Genet 8:e1002988PubMedPubMedCentralCrossRefGoogle Scholar
  26. Cong L, Ran FA, Cox D, Lin S, Barretto R, Habib N, Hsu PD, Wu X, Jiang W, Marraffini LA, Zhang F (2013) Multiplex genome engineering using CRISPR/Cas systems. Science 339:819–823PubMedPubMedCentralCrossRefGoogle Scholar
  27. Cooper S, Dienstbier M, Hassan R, Schermelleh L, Sharif J, Blackledge NP, De Marco V, Elderkin S, Koseki H, Klose R, Heger A, Brockdorff N (2014) Targeting polycomb to pericentric heterochromatin in embryonic stem cells reveals a role for H2AK119u1 in PRC2 recruitment. Cell Rep 7:1456–1470PubMedPubMedCentralCrossRefGoogle Scholar
  28. Cuerda-Gil D, Slotkin RK (2016) Non-canonical RNA-directed DNA methylation. Nat Plants 2:16163PubMedCrossRefGoogle Scholar
  29. Cui X, Lu F, Qiu Q, Zhou B, Gu L, Zhang S, Kang Y, Ma X, Yao Q, Ma J, Zhang X, Cao X (2016) REF6 recognizes a specific DNA sequence to demethylate H3K27me3 and regulate organ boundary formation in Arabidopsis. Nat Genet 48:694–699PubMedCrossRefGoogle Scholar
  30. de Napoles M, Mermoud JE, Wakao R, Tang YA, Endoh M, Appanah R, Nesterova TB, Silva J, Otte AP, Vidal M, Koseki H, Brockdorff N (2004) Polycomb group proteins Ring1A/B link ubiquitylation of histone H2A to heritable gene silencing and X inactivation. Dev Cell 7:663–676PubMedCrossRefGoogle Scholar
  31. Deal RB, Henikoff S (2011a) Histone variants and modifications in plant gene regulation. Curr Opin Plant Biol 14:116–122PubMedCrossRefGoogle Scholar
  32. Deal RB, Henikoff S (2011b) The INTACT method for cell type-specific gene expression and chromatin profiling in Arabidopsis thaliana. Nat Protoc 6:56–68PubMedCrossRefGoogle Scholar
  33. Deleris A, Greenberg MV, Ausin I, Law RW, Moissiard G, Schubert D, Jacobsen SE (2010) Involvement of a Jumonji-C domain-containing histone demethylase in DRM2-mediated maintenance of DNA methylation. EMBO Rep 11:950–955PubMedPubMedCentralCrossRefGoogle Scholar
  34. Deng S, Dai H, Arenas C, Wang H, Niu HW, Chua NH (2014) Transcriptional silencing of Arabidopsis endogens by single-stranded RNAs targeting the promoter region. Plant Cell Physiol 55:823–833PubMedCrossRefGoogle Scholar
  35. Derkacheva M, Steinbach Y, Wildhaber T, Mozgová I, Mahrez W, Nanni P, Bischof S, Gruissem W, Hennig L (2013) Arabidopsis MSI1 connects LHP1 to PRC2 complexes. EMBO J 32:2073–2085PubMedPubMedCentralCrossRefGoogle Scholar
  36. Dowen RH, Pelizzola M, Schmitz RJ, Lister R, Dowen JM, Nery JR, Dixon JE, Ecker JR (2012) Widespread dynamic DNA methylation in response to biotic stress. Proc Natl Acad Sci U S A 109:E2183–E2191PubMedPubMedCentralCrossRefGoogle Scholar
  37. Down TA, Rakyan VK, Turner DJ, Flicek P, Li H, Kulesha E, Gräf S, Johnson N, Herrero J, Tomazou EM, Thorne NP, Bäckdahl L, Herberth M, Howe KL, Jackson DK, Miretti MM, Marioni JC, Birney E, Hubbard TJ, Durbin R, Tavaré S, Beck S (2008) A Bayesian deconvolution strategy for immunoprecipitation-based DNA methylome analysis. Nat Biotechnol 26:779–785PubMedPubMedCentralCrossRefGoogle Scholar
  38. Earley K, Lawrence RJ, Pontes O, Reuther R, Enciso AJ, Silva M, Neves N, Gross M, Viegas W, Pikaard CS (2006) Erasure of histone acetylation by Arabidopsis HDA6 mediates large-scale gene silencing in nucleolar dominance. Genes Dev 20:1283–1293PubMedPubMedCentralCrossRefGoogle Scholar
  39. Ebbs ML, Bender J (2006) Locus-specific control of DNA methylation by the Arabidopsis SUVH5 histone methyltransferase. Plant Cell 18:1166–1176PubMedPubMedCentralCrossRefGoogle Scholar
  40. Ebbs ML, Bartee L, Bender J (2005) H3 lysine 9 methylation is maintained on a transcribed inverted repeat by combined action of SUVH6 and SUVH4 methyltransferases. Mol Cell Biol 25:10507–10515PubMedPubMedCentralCrossRefGoogle Scholar
  41. Fauser F, Schiml S, Puchta H (2014) Both CRISPR/Cas-based nucleases and nickases can be efficiently for genome engineering in Arabidopsis thaliana. Plant J 79:348–359PubMedCrossRefGoogle Scholar
  42. Fransz P, ten Hoopen R, Tessadori F (2006) Composition and formation of heterochromatin in Arabidopsis thaliana. Chromosom Res 14:71–82CrossRefGoogle Scholar
  43. Fuchs J, Demidov D, Houben A, Schubert I (2006) Chromosomal histone modification patterns – from conservation to diversity. Trends Plant Sci 11:199–208PubMedCrossRefGoogle Scholar
  44. Gan ES, Xu Y, Wong JY, Goh JG, Sun B, Wee WY, Huang J, Ito T (2014) Jumonji demethylases moderate precocious flowering at elevated temperature via regulation of FLC in Arabidopsis. Nat Commun 5:5098PubMedCrossRefGoogle Scholar
  45. Gao Z, Liu H, Daxinger L, Pontes O, He X, Qian W, Lin H, Xie M, Lorkovic Z, Zhang S, Miki D, Zhan X, Pontier D, Lagrange T, Jin H, Matzke A, Matzke M, Pikaard C, Zhu J (2010) An RNA polymerase II- and AGO4-associated protein acts in RNA-directed DNA methylation. Nature 465:106–109PubMedPubMedCentralCrossRefGoogle Scholar
  46. Garg R, Narayana Chevala V, Shankar R, Jain M (2015) Divergent DNA methylation patterns associated with gene expression in rice cultivars with contrasting drought and salinity stress response. Sci Rep 5:14922PubMedPubMedCentralCrossRefGoogle Scholar
  47. Gendall AR, Levy YY, Wilson A, Dean C (2001) The VERNALIZATION 2 gene mediates the epigenetic regulation of vernalization in Arabidopsis. Cell 107:525–535PubMedCrossRefGoogle Scholar
  48. Gent JI, Ellis NA, Guo L, Harkess AE, Yao Y, Zhang X, Dawe RK (2013) CHH islands: de novo DNA methylation in near-gene chromatin regulation in maize. Genome Res 23:628–637PubMedPubMedCentralCrossRefGoogle Scholar
  49. Gil J, O’Loghlen A (2014) PRC1 complex diversity: where is it taking us? Trends Cell Biol 24:632–641PubMedCrossRefGoogle Scholar
  50. Giresi PG, Kim J, McDaniell RM, Iyer VR, Lieb JD (2007) FAIRE (Formaldehyde-Assisted Isolation of Regulatory Elements) isolates active regulatory elements from human chromatin. Genome Res 17:877–885PubMedPubMedCentralCrossRefGoogle Scholar
  51. Gong Z, Morales-Ruiz T, Ariza RR, Roldan-Arjona T, David L, Zhu JK (2002) ROS1, a repressor of transcriptional gene silencing in Arabidopsis, encodes a DNA glycosylase/lyase. Cell 111:803–814PubMedCrossRefGoogle Scholar
  52. Goodrich J, Puangsomlee P, Martin M, Long D, Meyerowitz EM, Coupland G (1997) A Polycomb-group gene regulates homeotic gene expression in Arabidopsis. Nature 386:44–51PubMedCrossRefGoogle Scholar
  53. Goto K, Kobori T, Kosaka Y, Natsuki T, Masuta C (2007) Characterization of silencing suppressor 2b of cucumber mosaic virus based of examination of its small RNA-bindng abilities. Plant Cell Physiol 48:1050–1060PubMedCrossRefGoogle Scholar
  54. Greenberg MV, Deleris A, Hale CJ, Liu A, Feng S, Jacobsen SE (2013) Interplay between active chromatin marks and RNA-directed DNA methylation in Arabidopsis thaliana. PLoS Genet 9:e1003946PubMedPubMedCentralCrossRefGoogle Scholar
  55. Grossniklaus U, Vielle-Calzada JP, Hoeppner MA, Gagliano WB (1998) Maternal control of embryogenesis by MEDEA, a polycomb group gene in Arabidopsis. Science 280:446–450PubMedCrossRefGoogle Scholar
  56. Guo L, Yu Y, Law JA, Zhang X (2010) SET DOMAIN GROUP2 is the major histone H3 lysine [corrected] 4 trimethyltransferase in Arabidopsis. Proc Natl Acad Sci U S A 107:18557–18562PubMedPubMedCentralCrossRefGoogle Scholar
  57. Ham BK, Lucas WJ (2017) Phloem-mobile RNAs as systemic signaling agents. Annu Rev Plant Biol 68:173–195PubMedCrossRefGoogle Scholar
  58. Havecker ER, Wallbridge LM, Hardcastle TJ, Bush MS, Kelly KA, Dunn RM, Schwach F, Doonan JH, Baulcombe DC (2010) The Arabidopsis RNA-directed DNA methylation argonautes functionally diverge based on their expression and interaction with target loci. Plant Cell 22:321–334PubMedPubMedCentralCrossRefGoogle Scholar
  59. Heilersig BHJB, Loonen AEHM, Janssen EM, Wolters AA, Visser RGF (2006) Efficiency of transcriptional gene silencing of GBSSI in potato depends on the promoter region that is used in an inverted repeat. Mol Gen Genomics 275:437–449CrossRefGoogle Scholar
  60. Hennig L, Taranto P, Walser M, Schönrock N, Gruissem W (2003) Arabidopsis MSI1 is required for epigenetic maintenance of reproductive development. Development 130:2555–2565PubMedCrossRefGoogle Scholar
  61. Hilton IB, D’Ippolito AM, Vockley CM, Thakore PI, Crawford GE, Reddy TE, Gersbach CA (2015) Epigenome editing by a CRISPR-Cas9-based acetyltransferase activates genes from promoters and enhancers. Nat Biotechnol 33:510–517PubMedPubMedCentralCrossRefGoogle Scholar
  62. Hossain MS, Kawakatsu T, Kim KD, Zhang N, Nguyen CT, Khan SM, Batek JM, Joshi T, Schmutz J, Grimwood J, Schmitz RJ, Xu D, Jackson SA, Ecker JR, Stacey G (2017) Divergent cytosine DNA methylation patterns in single-cell, soybean root hairs. New Phytol 214:808–819PubMedCrossRefGoogle Scholar
  63. Hsieh TF, Ibarra CA, Silva P, Zemach A, Eshed-Williams L, Fischer RL, Zilberman D (2009) Genome-wide demethylation of Arabidopsis endosperm. Science 324:1451–1454PubMedPubMedCentralCrossRefGoogle Scholar
  64. Hsieh PH, He S, Buttress T, Gao H, Couchman M, Fischer RL, Zilberman D, Feng X (2016) Arabidopsis male sexual lineage exhibits more robust maintenance of CG methylation than somatic tissues. Proc Natl Acad Sci U S A 113:15132–15137PubMedPubMedCentralCrossRefGoogle Scholar
  65. Ibarra CA, Feng X, Schoft VK, Hsieh TF, Uzawa R, Rodrigues JA, Zemach A, Chumak N, Machlicova A, Nishimura T, Rojas D, Fischer RL, Tamaru H, Zilberman D (2012) Active DNA demethylation in plant companion cells reinforces transposon methylation in gametes. Science 337:1360–1364PubMedPubMedCentralCrossRefGoogle Scholar
  66. Inagaki S, Miura-Kamio A, Nakamura Y, Lu F, Cui X, Cao X, Kimura H, Saze H, Kakutani T (2010) Autocatalytic differentiation of epigenetic modifications within the Arabidopsis genome. EMBO J 29:3496–3506PubMedPubMedCentralCrossRefGoogle Scholar
  67. Jackson V (1978) Studies on histone organization in the nucleosome using formaldehyde as a reversible cross-linking agent. Cell 15:945–954PubMedCrossRefGoogle Scholar
  68. Jacob Y, Feng S, LeBlanc CA, Bernatavichute YV, Stroud H, Cokus S, Johnson LM, Pellegrini M, Jacobsen SE, Michaels SD (2009) ATXR5 and ATXR6 are H3K27 monomethyltransferases required for chromatin structure and gene silencing. Nat Struct Mol Biol 16:763–768PubMedPubMedCentralCrossRefGoogle Scholar
  69. James C (2016) 20th anniversary of the global commercialization of biotech crops (1996 to 2015) and biotech crop highlights in 2015. International Service for the Acquisition of Agri-biotech Applications (ISAAA)
  70. Jiang D, Wang Y, He Y (2008) Repression of FLOWERING LOCUS C and FLOWERING LOCUS T by the Arabidopsis Polycomb repressive complex 2 components. PLoS One 3:e3404PubMedPubMedCentralCrossRefGoogle Scholar
  71. Jiang D, Kong NC, Gu X, Li Z, He Y (2011) Arabidopsis COMPASS-like complexes mediate histone H3 lysine-4 trimethylation to control floral transition and plant development. PLoS Genet 7:e1001330PubMedPubMedCentralCrossRefGoogle Scholar
  72. Johnson LM, Du J, Hale CJ, Bischof S, Feng S, Chodavarapu RK, Zhong X, Marson G, Pellegrini M, Segal DJ, Patel DJ, Jacobsen SE (2014) SRA- and SET-domain-containing proteins like RNA polymerase V occupancy to DNA methylation. Nature 507:124–128PubMedPubMedCentralCrossRefGoogle Scholar
  73. Jones L, Ratcliff F, Baulcombe DC (2001) RNA-directed transcriptional gene silencing in plants can be inherited independenly of the RNA trigger and requires Met1 for maintenance. Curr Biol 11:747–757PubMedCrossRefGoogle Scholar
  74. Ju Z, Wang L, Cao D, Zuo J, Zhu H, Fu LY, Zhu B (2016) A viral satellite DNA vector-induced transcriptional gene silencing via DNA methylation of gene promoter in Nicotiana benthamiana. Virus Res 223:99–107PubMedCrossRefGoogle Scholar
  75. Jullien PE, Katz A, Oliva M, Ohad N, Berger F (2006) Polycomb group complexes self-regulate imprinting of the Polycomb group gene MEDEA in Arabidopsis. Curr Biol 16:486–492PubMedCrossRefGoogle Scholar
  76. Kalb R, Latwiel S, Baymaz HI, Jansen PW, Müller CW, Vermeulen M, Müller J (2014) Histone H2A monoubiquitination promotes histone H3 methylation in Polycomb repression. Nat Struct Mol Biol 21:569–571PubMedCrossRefGoogle Scholar
  77. Kanazawa A, Inaba J, Shimura H, Otagaki S, Tsukahara S, Matsuzawa A, Kim BM, Goto K, Masuta C (2011) Virus-mediated efficient induction of epigenetic modifications of endogenous genes with phenotypic changes in plants. Plant J 65:156–168PubMedCrossRefGoogle Scholar
  78. Kankel MW, Ramsey DE, Stokes TL, Flowers SK, Haag JR, Jeddeloh JA, Riddle NC, Verbsky ML, Richards EJ (2003) Arabidopsis MET1 cytosine methyltransferase mutants. Genetics 163:1109–1122PubMedPubMedCentralGoogle Scholar
  79. Kasai M, Kanazawa A (2013) Induction of RNA-directed DNA methylation and heritable transcriptional gene silencing as a tool to engineer novel traits in plants. Plant Biotechnol 30:233–241CrossRefGoogle Scholar
  80. Kasai A, Bai S, Hojo H, Harada T (2016) Epigenome editing of potato by grafting using transgenic tobacco as siRNA donor. PLoS One 11:e0161729PubMedPubMedCentralCrossRefGoogle Scholar
  81. Kawakatsu T, Huang SS, Jupe F, Sasaki E, Schmitz RJ, Urich MA, Castanon R, Nery JR, Barragan C, He Y, Chen H, Dubin M, Lee CR, Wang C, Bemm F, Becker C, O’Neil R, O’Malley RC, Quarless DX, Genomes C, Schork NJ, Weigel D, Nordborg M, Ecker JR (2016a) Epigenomic diversity in a global collection of Arabidopsis thaliana accessions. Cell 166:492–505PubMedPubMedCentralCrossRefGoogle Scholar
  82. Kawakatsu T, Stuart T, Valdes M, Breakfield N, Schmitz RJ, Nery JR, Urich MA, Han X, Lister R, Benfey PN, Ecker JR (2016b) Unique cell-type-specific patterns of DNA methylation in the root meristem. Nat Plants 2:16058PubMedPubMedCentralCrossRefGoogle Scholar
  83. Kawashima T, Berger F (2014) Epigenetic reprogramming in plant sexual reproduction. Nat Rev Genet 15:613–624PubMedCrossRefGoogle Scholar
  84. Kenzior AL, Folk WR (1998) AtMSI4 and RbAp48 WD-40 repeat proteins bind metal ions. FEBS Lett 440:425–429PubMedCrossRefGoogle Scholar
  85. Kim SY, Zhu T, Sung ZR (2010) Epigenetic regulation of gene programs by EMF1 and EMF2 in Arabidopsis. Plant Physiol 152:516–528PubMedPubMedCentralCrossRefGoogle Scholar
  86. Kim SY, Lee J, Eshed-Williams L, Zilberman D, Sung ZR (2012) EMF1 and PRC2 cooperate to repress key regulators of Arabidopsis development. PLoS Genet 8:e1002512PubMedPubMedCentralCrossRefGoogle Scholar
  87. Kon T, Yoshikawa N (2014) Induction and maintenance of DNA methylation in promoter sequences by apple latent spherical virus-induced transcriptional gene silencing. Front Microbiol 5:595PubMedPubMedCentralCrossRefGoogle Scholar
  88. Konermann S, Brigham MD, Trevino A, Hsu PD, Matthias H, Cong L, Platt RJ, Scott DA, Church GM, Zhang F (2013) Optical control of mammalian endogenous transcription and epigenetic states. Nature 500:472–476PubMedPubMedCentralCrossRefGoogle Scholar
  89. Kornberg RD (1974) Chromatin structure: a repeating unit of histones and DNA. Science 184:868–871PubMedCrossRefGoogle Scholar
  90. Lafos M, Kroll P, Hohenstatt ML, Thorpe FL, Clarenz O, Schubert D (2011) Dynamic regulation of H3K27 trimethylation during Arabidopsis differentiation. PLoS Genet 7:e1002040PubMedPubMedCentralCrossRefGoogle Scholar
  91. Law JA, Jacobsen SE (2010) Establishing, maintaining and modifying DNA methylation patterns in plants and animals. Nat Rev Genet 11:204–220PubMedPubMedCentralCrossRefGoogle Scholar
  92. Lei M, Zhang H, Julian R, Tang K, Xie S, Zhu JK (2015) Regulatory link between DNA methylation and active demethylation in Arabidopsis. Proc Natl Acad Sci U S A 112:3553–3557PubMedPubMedCentralCrossRefGoogle Scholar
  93. Li G, Liu S, Wang J, He J, Huang H, Zhang Y, Xu L (2014) ISWI proteins participate in the genome-wide nucleosome distribution in Arabidopsis. Plant J 78:706–714PubMedCrossRefGoogle Scholar
  94. Li C, Gu L, Gao L, Chen C, Wei CQ, Qiu Q, Chien CW, Wang S, Jiang L, Ai LF, Chen CY, Yang S, Nguyen V, Qi Y, Snyder MP, Burlingame AL, Kohalmi SE, Huang S, Cao X, Wang ZY, Wu K, Chen X, Cui Y (2016) Concerted genomic targeting of H3K27 demethylase REF6 and chromatin-remodeling ATPase BRM in Arabidopsis. Nat Genet 48:687–693PubMedPubMedCentralCrossRefGoogle Scholar
  95. Lindroth AM, Cao X, Jackson JP, Zilberman D, CM MC, Henikoff S, Jacobsen SE (2001) Requirement of CHROMOMETHYLASE3 for maintenance of CpXpG methylation. Science 292:2077–2080PubMedCrossRefGoogle Scholar
  96. Lister R, O’Malley RC, Tonti-Filippini J, Gregory BD, Berry CC, Millar AH, Ecker JR (2008) Highly integrated single-base resolution maps of the epigenome in Arabidopsis. Cell 133:523–536PubMedPubMedCentralCrossRefGoogle Scholar
  97. Liu X, Yang S, Zhao M, Luo M, Yu CW, Chen CY, Tai R, Wu K (2014) Transcriptional repression by histone deacetylases in plants. Mol Plant 7:764–772PubMedCrossRefGoogle Scholar
  98. Lu F, Cui X, Zhang S, Liu C, Cao X (2010) JMJ14 is an H3K4 demethylase regulating flowering time in Arabidopsis. Cell Res 20:387–390PubMedCrossRefGoogle Scholar
  99. Lu F, Cui X, Zhang S, Jenuwein T, Cao X (2011) Arabidopsis REF6 is a histone H3 lysine 27 demethylase. Nat Genet 43:715–719PubMedCrossRefGoogle Scholar
  100. Lu Z, Hofmeister BT, Vollmers C, DuBois RM, Schmitz RJ (2016) Combining ATAC-seq with nuclei sorting for discovery of cis-regulatory regions in plant genomes. Nucleic Acids Res 45:e41PubMedCentralCrossRefGoogle Scholar
  101. Luger K, Rechsteiner TJ, Flaus AJ, Waye MM, Richmond TJ (1997) Characterization of nucleosome core particles containing histone proteins made in bacteria. J Mol Biol 272:301–311PubMedCrossRefGoogle Scholar
  102. Luo C, Lam E (2014) Quantitatively profiling genome-wide patterns of histone modifications in Arabidopsis thaliana using ChIP-seq. Methods Mol Biol 1112:177–193PubMedCrossRefGoogle Scholar
  103. Luo M, Bilodeau P, Koltunow A, Dennis ES, Peacock WJ, Chaudhury AM (1999) Genes controlling fertilization-independent seed development in Arabidopsis thaliana. Proc Natl Acad Sci U S A 96:296–301PubMedPubMedCentralCrossRefGoogle Scholar
  104. Lusser M, Parisi C, Plan D, Rodriguez-Cerezo E (2012) Deployment of new biotechnologies in plant breeding. Nat Biotechnol 30:231–239PubMedCrossRefGoogle Scholar
  105. Makarevich G, Leroy O, Akinci U, Schubert D, Clarenz O, Goodrich J, Grossniklaus U, Köhler C (2006) Different Polycomb group complexes regulate common target genes in Arabidopsis. EMBO Rep 7:947–952PubMedPubMedCentralCrossRefGoogle Scholar
  106. Mali P, Yang L, Esvelt KM, Aach J, Guell M, DiCarlo JE, Norville JE, Church GM (2013) RNA-guided human genome engineering via Cas9. Science 339:823–826PubMedPubMedCentralCrossRefGoogle Scholar
  107. Margueron R, Reinberg D (2011) The Polycomb complex PRC2 and its mark in life. Nature 469:343–349PubMedPubMedCentralCrossRefGoogle Scholar
  108. Matzke MA, Kanno T, Matzke JM (2015) RNA-directed DNA methylation: the evolution of a complex epigenetic pathway in flowering plants. Annu Rev Plant Biol 66:243–267PubMedCrossRefGoogle Scholar
  109. Maunakea AK, Nagarajan RP, Bilenky M, Ballinger TJ, D’Souza C, Fouse SD, Johnson BE, Hong C, Nielsen C, Zhao Y, Turecki G, Delaney A, Varhol R, Thiessen N, Shchors K, Heine VM, Rowitch DH, Xing X, Fiore C, Schillebeeckx M, Jones SJ, Haussler D, Marra MA, Hirst M, Wang T, Costello JF (2010) Conserved role of intragenic DNA methylation in regulating alternative promoters. Nature 466:253–257PubMedPubMedCentralCrossRefGoogle Scholar
  110. McCue AD, Panda K, Nuthikattu S, Choudury SG, Thomas EN, Slotkin RK (2015) ARGONAUTE 6 bridges transposable element mRNA-derived siRNAs to the establishment of DNA methylation. EMBO J 34:20–35PubMedCrossRefGoogle Scholar
  111. Melnyk CW, Molnar A, Baulconbe DC (2011) Intercelluar and systemic novement of RNA silencing signals. EMBO J 30:3553–3563PubMedPubMedCentralCrossRefGoogle Scholar
  112. Merini W, Calonje M (2015) PRC1 is taking the lead in PcG repression. Plant J 83:110–120PubMedCrossRefGoogle Scholar
  113. Meyer CA, Liu XS (2014) Identifying and mitigating bias in next-generation sequencing methods for chromatin biology. Nat Rev Genet 15:709–721PubMedPubMedCentralCrossRefGoogle Scholar
  114. Mozgova I, Köhler C, Hennig L (2015) Keeping the gate closed: functions of the polycomb repressive complex PRC2 in development. Plant J 83:121–132PubMedCrossRefGoogle Scholar
  115. Narsai R, Secco D, Schultz MD, Ecker JR, Lister R, Whelan J (2016) Dynamic and rapid changes in the transcriptome and epigenome during germination and in developing rice (Oryza sativa) coleoptiles under anoxia and re-oxygenation. Plant J 89:805–824CrossRefGoogle Scholar
  116. Niederhuth CE, Bewick AJ, Ji L, Alabady MS, Kim KD, Li Q, Rohr NA, Rambani A, Burke JM, Udall JA, Egesi C, Schmutz J, Grimwood J, Jackson SA, Springer NM, Schmitz RJ (2016) Widespread natural variation of DNA methylation within angiosperms. Genome Biol 17:194PubMedPubMedCentralCrossRefGoogle Scholar
  117. Noh B, Lee SH, Kim HJ, Yi G, Shin EA, Lee M, Jung KJ, Doyle MR, Amasino RM, Noh YS (2004) Divergent roles of a pair of homologous jumonji/zinc-finger-class transcription factor proteins in the regulation of Arabidopsis flowering time. Plant Cell 16:2601–2613PubMedPubMedCentralCrossRefGoogle Scholar
  118. O’Malley RC, Huang SC, Song L, Lewsey MG, Bartlett A, Nery JR, Galli M, Gallavotti A, Ecker JR (2016) Cistrome and epicistrome features shape the regulatory DNA landscape. Cell 165:1280–1292PubMedPubMedCentralCrossRefGoogle Scholar
  119. O’Neill LP, Turner BM (1995) Histone H4 acetylation distinguishes coding regions of the human genome from heterochromatin in a differentiation-dependent but transcription-independent manner. EMBO J 14:3946–3957PubMedPubMedCentralGoogle Scholar
  120. Okano Y, Miki D, Shimamoto K (2008) Small interfering RNA (siRNA) targeting of endogenous promoters induces methylation but not necessarily gene silencing, in rice. Plant J 53:65–77PubMedCrossRefGoogle Scholar
  121. Ong-Abdullah M, Ordway JM, Jiang N, Ooi SE, Kok SY, Sarpan N, Azimi N, Hashim AT, Ishak Z, Rosli SK, Malike FA, Bakar NA, Marjuni M, Abdullah N, Yaakub Z, Amiruddin MD, Nookiah R, Singh R, Low ET, Chan KL, Azizi N, Smith SW, Bacher B, Budiman MA, Van Brunt A, Wischmeyer C, Beil M, Hogan M, Lakey N, Lim CC, Arulandoo X, Wong CK, Choo CN, Wong WC, Kwan YY, Alwee SS, Sambanthamurthi R, Martienssen RA (2015) Loss of karma transposon methylation underlies the mantled somaclonal variant of oil palm. Nature 525:533–537PubMedPubMedCentralCrossRefGoogle Scholar
  122. Ortega-Galisteo AP, Morales-Ruiz T, Ariza RR, Roldan-Arjona T (2008) Arabidopsis DEMETER-LIKE proteins DML2 and DML3 are required for appropriate distribution of DNA methylation marks. Plant Mol Biol 67:671–681PubMedCrossRefGoogle Scholar
  123. Pandey R, Müller A, Napoli CA, Selinger DA, Pikaard CS, Richards EJ, Bender J, Mount DW, Jorgensen RA (2002) Analysis of histone acetyltransferase and histone deacetylase families of Arabidopsis thaliana suggests functional diversification of chromatin modification among multicellular eukaryotes. Nucleic Acids Res 30:5036–5055PubMedPubMedCentralCrossRefGoogle Scholar
  124. Park K, Kim MY, Vickers M, Park JS, Hyun Y, Okamoto T, Zilberman D, Fischer RL, Feng X, Choi Y, Scholten S (2016) DNA demethylation is initiated in the central cells of Arabidopsis and rice. Proc Natl Acad Sci U S A 113:15138–15143PubMedPubMedCentralCrossRefGoogle Scholar
  125. Pazhouhandeh M, Molinier J, Berr A, Genschik P (2011) MSI4/FVE interacts with CUL4-DDB1 and a PRC2-like complex to control epigenetic regulation of flowering time in Arabidopsis. Proc Natl Acad Sci U S A 108:3430–3435PubMedPubMedCentralCrossRefGoogle Scholar
  126. Pengelly AR, Kalb R, Finkl K, Müller J (2015) Transcriptional repression by PRC1 in the absence of H2A monoubiquitylation. Genes Dev 29:1487–1492PubMedPubMedCentralCrossRefGoogle Scholar
  127. Penterman J, Zilberman D, Huh JH, Ballinger T, Henikoff S, Fischer RL (2007) DNA demethylation in the Arabidopsis genome. Proc Natl Acad Sci U S A 104:6752–6757PubMedPubMedCentralCrossRefGoogle Scholar
  128. Project AG (2013) The Amborella genome and the evolution of flowering plants. Science 342:1241089CrossRefGoogle Scholar
  129. Rand AC, Jain M, Eizenga JM, Musselman-Brown A, Olsen HE, Akeson M, Paten B (2017) Mapping DNA methylation with high-throughput nanopore sequencing. Nat Methods 14:411–413PubMedPubMedCentralCrossRefGoogle Scholar
  130. Roudier F, Teixeira FK, Colot V (2009) Chromatin indexing in Arabidopsis: an epigenomic tale of tails and more. Trends Genet 25:511–517PubMedCrossRefGoogle Scholar
  131. Roudier F, Ahmed I, Bérard C, Sarazin A, Mary-Huard T, Cortijo S, Bouyer D, Caillieux E, Duvernois-Berthet E, Al-Shikhley L, Giraut L, Després B, Drevensek S, Barneche F, Dèrozier S, Brunaud V, Aubourg S, Schnittger A, Bowler C, Martin-Magniette ML, Robin S, Caboche M, Colot V (2011) Integrative epigenomic mapping defines four main chromatin states in Arabidopsis. EMBO J 30:1928–1938PubMedPubMedCentralCrossRefGoogle Scholar
  132. Saleh A, Al-Abdallat A, Ndamukong I, Alvarez-Venegas R, Avramova Z (2007) The Arabidopsis homologs of trithorax (ATX1) and enhancer of zeste (CLF) establish ‘bivalent chromatin marks’ at the silent AGAMOUS locus. Nucleic Acids Res 35:6290–6296PubMedPubMedCentralCrossRefGoogle Scholar
  133. Saleh A, Alvarez-Venegas R, Yilmaz M, Le O, Hou G, Sadder M, Al-Abdallat A, Xia Y, Lu G, Ladunga I, Avramova Z (2008) The highly similar Arabidopsis homologs of trithorax ATX1 and ATX2 encode proteins with divergent biochemical functions. Plant Cell 20:568–579PubMedPubMedCentralCrossRefGoogle Scholar
  134. Sanchez-Pulido L, Devos D, Sung ZR, Calonje M (2008) RAWUL: a new ubiquitin-like domain in PRC1 ring finger proteins that unveils putative plant and worm PRC1 orthologs. BMC Genomics 9:308PubMedPubMedCentralCrossRefGoogle Scholar
  135. Schaart JG, Wiel CCM, Lotz LAP, Smulders JM (2016) Opportunities for products of new plant breeding techniques. Trends Plant Sci 21:438–449PubMedCrossRefGoogle Scholar
  136. Schmid CD, Bucher P (2007) ChIP-Seq data reveal nucleosome architecture of human promoters. Cell 131:831–832. author reply 832–833PubMedCrossRefGoogle Scholar
  137. Schmidl C, Rendeiro AF, Sheffield NC, Bock C (2015) ChIPmentation: fast, robust, low-input ChIP-seq for histones and transcription factors. Nat Methods 12:963–965PubMedPubMedCentralCrossRefGoogle Scholar
  138. Schmitz RJ, Schultz MD, Lewsey MG, O’Malley RC, Urich MA, Libiger O, Schork NJ, Ecker JR (2011) Transgenerational epigenetic instability is a source of novel methylation variants. Science 334:369–373PubMedPubMedCentralCrossRefGoogle Scholar
  139. Schmitz RJ, He Y, Valdes-Lopez O, Khan SM, Joshi T, Urich MA, Nery JR, Diers B, Xu D, Stacey G, Ecker JR (2013a) Epigenome-wide inheritance of cytosine methylation variants in a recombinant inbred population. Genome Res 23:1663–1674PubMedPubMedCentralCrossRefGoogle Scholar
  140. Schmitz RJ, Schultz MD, Urich MA, Nery JR, Pelizzola M, Libiger O, Alix A, McCosh RB, Chen H, Schork NJ, Ecker JR (2013b) Patterns of population epigenomic diversity. Nature 495:193–198PubMedPubMedCentralCrossRefGoogle Scholar
  141. Schones DE, Cui K, Cuddapah S, Roh TY, Barski A, Wang Z, Wei G, Zhao K (2008) Dynamic regulation of nucleosome positioning in the human genome. Cell 132:887–898PubMedCrossRefGoogle Scholar
  142. Schoorlemmer J, Marcos-Gutiérrez C, Were F, Martínez R, García E, Satijn DP, Otte AP, Vidal M (1997) Ring1A is a transcriptional repressor that interacts with the Polycomb-M33 protein and is expressed at rhombomere boundaries in the mouse hindbrain. EMBO J 16:5930–5942PubMedPubMedCentralCrossRefGoogle Scholar
  143. Secco D, Wang C, Shou H, Schultz MD, Chiarenza S, Nussaume L, Ecker JR, Whelan J, Lister R (2015) Stress induced gene expression drives transient DNA methylation changes at adjacent repetitive elements. elife 4:e09343PubMedCentralCrossRefGoogle Scholar
  144. Seymour DK, Koenig D, Hagmann J, Becker C, Weigel D (2014) Evolution of DNA methylation patterns in the Brassicaceae is driven by differences in genome organization. PLoS Genet 10:e1004785PubMedPubMedCentralCrossRefGoogle Scholar
  145. Sijen T, Vijn I, Rebocho A, van Blokland R, Roelofs D, Mol JN, Kooter JM (2001) Transcriptional and posttranscriptional gene silencing are mechanistically related. Curr Biol 11:436–440PubMedCrossRefGoogle Scholar
  146. Simpson JT, Workman RE, Zuzarte PC, David M, Dursi LJ, Timp W (2017) Detecting DNA cytosine methylation using nanopore sequencing. Nat Methods 14:407–410PubMedCrossRefGoogle Scholar
  147. Song L, Huang SC, Wise A, Castanon R, Nery JR, Chen H, Watanabe M, Thomas J, Bar-Joseph Z, Ecker JR (2016) A transcription factor hierarchy defines an environmental stress response network. Science 354:aag1550PubMedPubMedCentralCrossRefGoogle Scholar
  148. Stroud H, Ding B, Simon SA, Feng S, Bellizzi M, Pellegrini M, Wang GL, Meyers BC, Jacobsen SE (2013) Plants regenerated from tissue culture contain stable epigenome changes in rice. elife 2:e00354PubMedPubMedCentralCrossRefGoogle Scholar
  149. Stroud H, Do T, Du J, Zhong X, Feng S, Johnson L, Patel DJ, Jacobsen SE (2014) Non-CG methylation patterns shape the epigenetic landscape in Arabidopsis. Nat Struct Mol Biol 21:64–72PubMedCrossRefGoogle Scholar
  150. Takuno S, Ran J-H, Gaut BS (2016) Evolutionary patterns of genic DNA methylation vary across land plants. Nat Plants 2:15222PubMedCrossRefGoogle Scholar
  151. Thoma F, Koller T (1977) Influence of histone H1 on chromatin structure. Cell 12:101–107PubMedCrossRefGoogle Scholar
  152. To TK, Kim JM, Matsui A, Kurihara Y, Morosawa T, Ishida J, Tanaka M, Endo T, Kakutani T, Toyoda T, Kimura H, Yokoyama S, Shinozaki K, Seki M (2011) Arabidopsis HDA6 regulates locus-directed heterochromatin silencing in cooperation with MET1. PLoS Genet 7:e1002055PubMedPubMedCentralCrossRefGoogle Scholar
  153. Tran RK, Henikoff JG, Zilberman D, Ditt RF, Jacobsen SE, Henikoff S (2005) DNA methylation profiling identifies CG methylation clusters in Arabidopsis genes. Curr Biol 15:154–159PubMedCrossRefGoogle Scholar
  154. Turck F, Roudier F, Farrona S, Martin-Magniette ML, Guillaume E, Buisine N, Gagnot S, Martienssen RA, Coupland G, Colot V (2007) Arabidopsis TFL2/LHP1 specifically associates with genes marked by trimethylation of histone H3 lysine 27. PLoS Genet 3:e86PubMedPubMedCentralCrossRefGoogle Scholar
  155. Urich MA, Nery JR, Lister R, Schmitz RJ, Ecker JR (2015) MethylC-seq library preparation for base-resolution whole-genome bisulfite sequencing. Nat Protoc 10:475–483PubMedPubMedCentralCrossRefGoogle Scholar
  156. Wang H, Wang L, Erdjument-Bromage H, Vidal M, Tempst P, Jones RS, Zhang Y (2004) Role of histone H2A ubiquitination in Polycomb silencing. Nature 431:873–878PubMedCrossRefGoogle Scholar
  157. Wang Y, Gu X, Yuan W, Schmitz RJ, He Y (2014) Photoperiodic control of the floral transition through a distinct polycomb repressive complex. Dev Cell 28:727–736PubMedCrossRefGoogle Scholar
  158. Wibowo A, Becker C, Marconi G, Durr J, Price J, Hagmann J, Papareddy R, Putra H, Kageyama J, Becker J, Weigel D, Gutierrez-Marcos J (2016) Hyperosmotic stress memory in Arabidopsis is mediated by distinct epigenetically labile sites in the genome and is restricted in the male germline by DNA glycosylase activity. elife 5:e13456CrossRefGoogle Scholar
  159. Williams BP, Pignatta D, Henikoff S, Gehring M (2015) Methylation-sensitive expression of a DNA demethylase gene serves as an epigenetic rheostat. PLoS Genet 11:e1005142PubMedPubMedCentralCrossRefGoogle Scholar
  160. Wu Y, Zhang W, Jiang J (2014) Genome-wide nucleosome positioning is orchestrated by genomic regions associated with DNase I hypersensitivity in rice. PLoS Genet 10:e1004378PubMedPubMedCentralCrossRefGoogle Scholar
  161. Xu L, Shen WH (2008) Polycomb silencing of KNOX genes confines shoot stem cell niches in Arabidopsis. Curr Biol 18:1966–1971PubMedCrossRefGoogle Scholar
  162. Xu L, Zhao Z, Dong A, Soubigou-Taconnat L, Renou JP, Steinmetz A, Shen WH (2008) Di- and tri- but not monomethylation on histone H3 lysine 36 marks active transcription of genes involved in flowering time regulation and other processes in Arabidopsis thaliana. Mol Cell Biol 28:1348–1360PubMedCrossRefGoogle Scholar
  163. Yang C, Bratzel F, Hohmann N, Koch M, Turck F, Calonje M (2013) VAL- and AtBMI1-mediated H2Aub initiate the switch from embryonic to postgerminative growth in Arabidopsis. Curr Biol 23:1324–1329PubMedCrossRefGoogle Scholar
  164. Yang H, Howard M, Dean C (2014) Antagonistic roles for H3K36me3 and H3K27me3 in the cold-induced epigenetic switch at Arabidopsis FLC. Curr Biol 24:1793–1797PubMedPubMedCentralCrossRefGoogle Scholar
  165. Yoshida N, Yanai Y, Chen L, Kato Y, Hiratsuka J, Miwa T, Sung ZR, Takahashi S (2001) EMBRYONIC FLOWER2, a novel polycomb group protein homolog, mediates shoot development and flowering in Arabidopsis. Plant Cell 13:2471–2481PubMedPubMedCentralCrossRefGoogle Scholar
  166. Zemach A, Kim MY, Hsieh PH, Coleman-Derr D, Eshed-Williams L, Thao K, Harmer SL, Zilberman D (2013) The Arabidopsis nucleosome remodeler DDM1 allows DNA methyltransferases to access H1-containing heterochromatin. Cell 153:193–205PubMedPubMedCentralCrossRefGoogle Scholar
  167. Zhang X, Yazaki J, Sundaresan A, Cokus S, Chan SW, Chen H, Henderson IR, Shinn P, Pellegrini M, Jacobsen SE, Ecker JR (2006) Genome-wide high-resolution mapping and functional analysis of DNA methylation in arabidopsis. Cell 126:1189–1201PubMedCrossRefGoogle Scholar
  168. Zhang X, Clarenz O, Cokus S, Bernatavichute YV, Pellegrini M, Goodrich J, Jacobsen SE (2007) Whole-genome analysis of histone H3 lysine 27 trimethylation in Arabidopsis. PLoS Biol 5:e129PubMedPubMedCentralCrossRefGoogle Scholar
  169. Zhang W, Wu Y, Schnable JC, Zeng Z, Freeling M, Crawford GE, Jiang J (2012a) High-resolution mapping of open chromatin in the rice genome. Genome Res 22:151–162PubMedPubMedCentralCrossRefGoogle Scholar
  170. Zhang W, Zhang T, Wu Y, Jiang J (2012b) Genome-wide identification of regulatory DNA elements and protein-binding footprints using signatures of open chromatin in Arabidopsis. Plant Cell 24:2719–2731PubMedPubMedCentralCrossRefGoogle Scholar
  171. Zhang T, Zhang W, Jiang J (2015) Genome-wide nucleosome occupancy and positioning and their impact on gene expression and evolution in plants. Plant Physiol 168:1406–1416PubMedPubMedCentralCrossRefGoogle Scholar
  172. Zhao Z, Yu Y, Meyer D, Wu C, Shen WH (2005) Prevention of early flowering by expression of FLOWERING LOCUS C requires methylation of histone H3 K36. Nat Cell Biol 7:1256–1260PubMedCrossRefGoogle Scholar
  173. Zhong S, Fei Z, Chen YR, Zheng Y, Huang M, Vrebalov J, McQuinn R, Gapper N, Liu B, Xiang J, Shao Y, Giovannoni JJ (2013) Single-base resolution methylomes of tomato fruit development reveal epigenome modifications associated with ripening. Nat Biotechnol 31:154–159PubMedCrossRefGoogle Scholar
  174. Zilberman D, Gehring M, Tran RK, Ballinger T, Henikoff S (2007) Genome-wide analysis of Arabidopsis thaliana DNA methylation uncovers an interdependence between methylation and transcription. Nat Genet 39:61–69PubMedCrossRefGoogle Scholar
  175. Zilberman D, Coleman-Derr D, Ballinger T, Henikoff S (2008) Histone H2A.Z and DNA methylation are mutually antagonistic chromatin marks. Nature 456:125–129PubMedPubMedCentralCrossRefGoogle Scholar

Copyright information

© Springer Nature Singapore Pte Ltd. 2018

Authors and Affiliations

  1. 1.Plant Molecular Farming UnitInstitute of Agrobiological Sciences, National Agriculture and Food Research OrganizationTsukubaJapan

Personalised recommendations