Advertisement

Active Vibration Control Based on LQR Technique for Two Degrees of Freedom System

  • Behrouz Kheiri Sarabi
  • Manu Sharma
  • Damanjeet Kaur
Conference paper
Part of the Lecture Notes in Electrical Engineering book series (LNEE, volume 490)

Abstract

Recently, researchers have proposed active vibration control technique to control undesired vibrations in structures. In this work, procedure of active vibration control is discussed in a simple way. For that, the mathematical model of structure, the optimal placement of sensor and actuator, and control laws of active vibration control are discussed. Finally, vibration control using LQR technique has been applied on two degrees of freedom system to illustrate the active vibration control.

Keywords

Active vibration control Mathematical model Optimal placement Control law Two degrees of freedom system 

References

  1. 1.
    Pisoni AC, Santolini C, Hauf DE, Dubowsky S (1995) Displacements in a vibrating body by strain gage measurements. In: Proceedings-SPIE the International Society for Optical Engineering, pp 119–119Google Scholar
  2. 2.
    Qiu ZC, Zhang XM, Wang YC, Wu ZW (2009) Active vibration control of a flexible beam using a non-collocated acceleration sensor and piezoelectric patch actuator. J Sound Vib 326:438–455CrossRefGoogle Scholar
  3. 3.
    Sarabi Kheiri B, Sharma M, Kaur D (2016) Simulation of a new technique for vibration tests, based upon active vibration control. IETE J Res 63:1–9Google Scholar
  4. 4.
    Kapuria S, Yasin MY (2010) Active vibration suppression of multilayered plates integrated with piezoelectric fiber reinforced composites using an efficient finite element model. J Sound Vib 329:3247–3265CrossRefGoogle Scholar
  5. 5.
    Clark YG, Fuller RLCR, Zander AC (1994) Experiments on active control of plate vibration using piezoelectric actuators and polyvinylidene fluoride (PVDF) modal sensors. J Vib Acoust 116:303–308CrossRefGoogle Scholar
  6. 6.
    Shinya S (2013) Vibration control of a structure using magneto-rheological grease damper. Front Mech Eng 8:261–267CrossRefGoogle Scholar
  7. 7.
    Li J, Gruver WA (1998) An electrorheological fluid damper for vibration control. In: IEEE conference ICRA, pp 2476–2481.Google Scholar
  8. 8.
    Kheiri Sarabi B, Sharma M, Kaur D, Kumar N (2016) A Novel technique for generating desired vibrations in structure. Integr Ferroelectr 176:236–250CrossRefGoogle Scholar
  9. 9.
    Simões RC, Steffen V, Der Hagopian J, Mahfoud J (2007) Modal active vibration control of a rotor using piezoelectric stack actuators. J Vib Control 13:45–64CrossRefzbMATHGoogle Scholar
  10. 10.
    Baillargeon BP, Vel SS (2005) Exact solution for the vibration and active damping of composite plates with piezoelectric shear actuators. J Sound Vib 282:781–804CrossRefGoogle Scholar
  11. 11.
    Inman DJ (2006) Vibration with control. Wiley, West SessexCrossRefGoogle Scholar
  12. 12.
    Crawley E, de Luis J (1987) Use of piezoelectric actuators as elements of intelligent structures. AIAA J 25:1373–1385CrossRefGoogle Scholar
  13. 13.
    Raja S, Prathap G, Sinha PK (2002) Active vibration control of composite sandwich beams with piezoelectric extension-bending and shear actuators. Smart Mater Struct 11:63CrossRefGoogle Scholar
  14. 14.
    Chandrashekhara K, Tanneti R (1995) Thermally induced vibration suppression of laminated plates with piezoelectric sensors and actuators. Smart Mater Struct 4(1995):281–290CrossRefGoogle Scholar
  15. 15.
    Kheiri Sarabi B, Sharma M, Kaur D (2014) Techniques for creating mathematical model of structures for active vibration control. In: IEEE conference (RAECS)Google Scholar
  16. 16.
    Bailey T, Ubbard JE (1995) Distributed piezoelectric-polymer active vibration control of a cantilever beam. J Guid Control Dyn 8:605–611CrossRefGoogle Scholar
  17. 17.
    Kheiri Sarabi B, Sharma M, Kaur D (2017) An optimal control based technique for generating desired vibrations in a structure. Iran J Sci Technol 40:219–228Google Scholar
  18. 18.
    Baillargeon BP, Senthil Vel S (2005) Exact solution for the vibration and active damping of composite plates with piezoelectric shear actuators. J Sound Vib 282:781–804CrossRefGoogle Scholar
  19. 19.
    Kheiri Sarabi B, Maghade DK, Malwatkar GM (2012) An empirical data driven based control loop performance assessment of multi-variate systems. In: IEEE conference (INDICON), pp 70–74Google Scholar
  20. 20.
    Gou B (2008) Optimal placement of PMUs by integer linear programming. IEEE Trans Power Syst 23:1525–1526CrossRefGoogle Scholar
  21. 21.
    Theodorakatos N, Manousakis N, Korres G (2015) Optimal placement of phasor measurement units with linear and non-linear models. Electr Power Compon Syst 43:357–373CrossRefGoogle Scholar
  22. 22.
    Gou B (2008) Generalized integer linear programming formulation for optimal PMU placement. IEEE Trans Power Syst 23Google Scholar
  23. 23.
    Powell M (1978) The convergence of variable metric methods for nonlinearly constrained optimization calculations. In: Nonlinear programming 3. Academic PressGoogle Scholar
  24. 24.
    Vanderplaats GN (1984) An efficient feasible directions algorithm for design synthesis. AIAA J 22:1633–1640MathSciNetCrossRefGoogle Scholar
  25. 25.
    Rajdeep D, Ganguli R, Mani V (2011) Swarm intelligence algorithms for integrated optimization of piezo-electric actuator and sensor placement and feedback gains. Smart Mater Struct 20:1–14Google Scholar
  26. 26.
    Jose M, Simoes M (2006) Optimal design in vibration control of adaptive structure using a simulating annealing algorithm. Compos Struct 75:79–87CrossRefGoogle Scholar
  27. 27.
    Han JH, Lee I (1999) Optimal placement of piezoelectric sensors and actuators for vibration control of a composite plate using genetic algorithms. Smart Mater Struct 8:257–267CrossRefGoogle Scholar
  28. 28.
    Kincaid RK, Keith EL (1998) Reactive Tabu search and sensor selection in active structural acoustic control problems. J Heuristics 4:199–220CrossRefzbMATHGoogle Scholar
  29. 29.
    Chen L, Lin C, Wang C (2002) Dynamic stability analysis and control of a composite beam with piezoelectric layers. Compos Struct 56:97–109CrossRefGoogle Scholar
  30. 30.
    Beijen MA, van Dijk J, Hakvoort WBJ, Heertjes MF (2014) Self-tuning feedforward control for active vibration isolation of precision machines. In: Preprints of the 19th World Congress The International Federation of Automatic Control Cape Town, South AfricaGoogle Scholar
  31. 31.
    Jovanovic AM, Simonovic AM, Zoric ND, Luki NS, Stupar SN, Ilic SS (2013) Experimental studies on active vibration control of a smart composite beam using a PID controller. Smart Mater Struct 22Google Scholar
  32. 32.
    Lam KY, Peng XQ, Liu GR, Reddy JN (1997) A finite-element model for piezo-electric composite laminates. Smart Mater Struct 6:583–591CrossRefGoogle Scholar
  33. 33.
    Xu SX, Koko TS (2004) Finite element analysis and design of actively controlled piezoelectric smart structures. Finite Elem Anal Des 40:241–262CrossRefGoogle Scholar
  34. 34.
    Dong XJ, Meng G, Peng JC (2006) Vibration control of piezoelectric smart structures based on system identification technique: numerical simulation and experimental study. J Sound Vib 297:680–693MathSciNetCrossRefzbMATHGoogle Scholar
  35. 35.
    Hu YR, Ng A (2005) Active robust vibration control of flexible structures. J Sound Vib 288:43–56MathSciNetCrossRefzbMATHGoogle Scholar
  36. 36.
    Gu H, Song G (2007) Active vibration suppression of a smart flexible beam using a sliding mode based controller. J Vib Control 13:1095–1107CrossRefzbMATHGoogle Scholar
  37. 37.
    Lei L, Benli W (2008) Multi objective robust active vibration control for flexure jointed struts of Stewart platforms via H∞ and μ synthesis. Chin J Aeronaut 21:125–133CrossRefGoogle Scholar
  38. 38.
    Marinaki M, Marinakis Y, Stavroulakis GE (2010) Fuzzy control optimized by PSO for vibration suppression of beams. Control Eng Pract 18:618–629CrossRefGoogle Scholar
  39. 39.
    Chen CW, Yeh K, Chiang WL, Chen CY, Wu DJ (2007) Modeling, H∞ control and stability analysis for structural systems using Takagi-Sugeno fuzzy model. J Vib Control 13:1519–1534MathSciNetCrossRefzbMATHGoogle Scholar

Copyright information

© Springer Nature Singapore Pte Ltd. 2018

Authors and Affiliations

  • Behrouz Kheiri Sarabi
    • 1
  • Manu Sharma
    • 1
  • Damanjeet Kaur
    • 1
  1. 1.UIET, Panjab UniversityChandigarhIndia

Personalised recommendations