Migration Behavior of Tungsten Carbide in the Dissimilar Joints of WC-TiC-Ni/304 Stainless Steel Using Robotic MIG Welding

Conference paper
Part of the Transactions on Intelligent Welding Manufacturing book series (TRINWM)

Abstract

Using robotic metal inert gas (MIG) welding, WC-TiC-Ni/304 stainless steel was fabricated using pure nickel as welding wire. The welds consisted of the austenitic γ-Ni matrix, dissolved WC, and compound carbide (W, M)C. Electromagnetic stirring-induced (type I), diffusion-induced (type II), and shear-induced (type III) WC migration led to WCa and WCb type migration. The gradient layer and η-phase were formed at the interface. WCa migration (type I and type II) showed that arc plasma provided enough energy for WCa long-range migration from the heat affected zone (HAZ) to the fusion zone. WCb migration (III) exhibited the stress levels to be above the yield stress in the fusion zone. A self-sealing model was put forward to describe WC migration and the formation of gradient layers. The results showed that WC migration not only occurred in the fusion zone, but also in the HAZ, especially near the top surface, which led to gradient layer, η phase and tungsten dissolution-re-precipitation on the surface of WC. The results also indicated that the fusion zone had the ability to cure the cracks itself during the robotic MIG welding.

Keywords

Robotic MIG welding Electromagnet-induced migration Diffusion-induced migration Shear-induced migration Gradient layer 

Notes

Acknowledgements

This work is financially supported by the National Natural Science Foundation of China (51475282, 51105240), the “Shu Guang” Project of Shanghai Municipal Education Commission and Shanghai Education Development Foundation (13SG54).

References

  1. 1.
    Exner HE (1979) Physical and chemical nature of cemented carbides. Int Met Rev 24:149–173CrossRefGoogle Scholar
  2. 2.
    Sui Y, Luo H, Lv Y et al (2016) Influence of brazing technology on the microstructure and properties of YG20C cemented carbide and 16Mn steel joints. Weld World 60(6):1269–1275CrossRefGoogle Scholar
  3. 3.
    Guo Y, Wang Y, Gao B et al (2016) Rapid diffusion bonding of WC-Co cemented carbide to 40Cr steel with Ni interlayer: effect of surface roughness and interlayer thickness. Ceram Int 42(15):16729–16737CrossRefGoogle Scholar
  4. 4.
    Klünsner T, Wurster S, Supancic P et al (2011) Effect of specimen size on the tensile strength of WC-Co hard metal. Acta Mater 59(10):4244–4252CrossRefGoogle Scholar
  5. 5.
    Mirski Z, Granat K, Stano S (2016) Possibilities of laser-beam joining cemented carbides to steel. Weld Int 30(3):187–191CrossRefGoogle Scholar
  6. 6.
    Lay S, Dennadieu P, Loubradou M (2010) Polarity of prismatic facets delimiting WC grains in WC-Co alloys. Micron 41(5):472–477CrossRefGoogle Scholar
  7. 7.
    Ahn S, Kang S (2008) Dissolution phenomena in the Ti (C0.7N0.3)-WC-Ni system. Int J Refract Metal Hard Mater 26(4):340–345Google Scholar
  8. 8.
    Li LQ, Liu DJ, Chen YB et al (2009) Electron microscopy study of reaction layers between single-crystal WC particle and Ti-6Al-4V after laser melt injection. Acta Mater 57(12):3606–3614CrossRefGoogle Scholar
  9. 9.
    Barbatti C, Garcia J, Liedl G et al (2007) Joining of cemented carbides to steel by laser beam welding. Materialwiss Werkstofftech 38(11):907–914CrossRefGoogle Scholar
  10. 10.
    Lavergne O, Robaut F, Hodaj F et al (2002) Mechanism of solid-state dissolution of WC in Co-based solutions. Acta Mater 50(7):1683–1692CrossRefGoogle Scholar
  11. 11.
    Cheniti B, Miroud D, Badji R et al (2017) Effect of brazing current on microstructure and mechanical behavior of WC-Co/AISI 1020 steel TIG brazed joint. Int J Refract Metal Hard Mater 64:210–218CrossRefGoogle Scholar
  12. 12.
    Su JZ, Guo LJ, Bao NZ et al (2011) Nanostructured WO3/BiVO4 heterojunction films for efficient photo electro-chemical water splitting. Nano Lett 11(5):1928–1933CrossRefGoogle Scholar
  13. 13.
    Zou J, Sun SK, Zhang GJ et al (2011) Chemical reactions, anisotropic grain growth and sintering mechanisms of self-reinforced ZrB2-SiC doped with WC. J Am Ceram Soc 94(5):1575–1583CrossRefGoogle Scholar
  14. 14.
    Guo J, Fang ZZ, Fan P et al (2011) Kinetics of the formation of metal binder gradient in WC-Co by carbon diffusion induced liquid migration. Acta Mater 59(11):4719–4731CrossRefGoogle Scholar
  15. 15.
    Zhang XZ, Liu GW, Tao JN et al (2017) Vacuum brazing of WC-8Co cemented carbides to carbon steel using pure Cu and Ag-28Cu as filler metal. J Mater Eng Perform 26(2):488–494CrossRefGoogle Scholar
  16. 16.
    Niu L, Hojamberdiev M, Xu YH (2010) Preparation of in situ-formed WC/Fe composite on gray cast iron substrate by a centrifugal casting process. J Mater Process Tech 210(14):1986–1990CrossRefGoogle Scholar
  17. 17.
    Konyashin I, Hlawatschek S, Ries B et al (2009) On the mechanism of WC coarsening in WC–Co hard metals with various carbon contents. Int J Refract Metal Hard Mater 27(2):234–243CrossRefGoogle Scholar
  18. 18.
    Upadhyaya GS (1998) Cemented tungsten carbides: production, properties, and testing. Noyes Publications, WestwoodGoogle Scholar
  19. 19.
    Fernandes CM, Senos AMR, Vieira MT (2007) Control of η carbide formation in tungsten carbide powders sputter-coated with (Fe/Ni/Cr). Int J Refract Metal Hard Mater 25(4):310–317CrossRefGoogle Scholar
  20. 20.
    Mercado WB, Cuevas J, Castro IY et al (2007) Synthesis and characterization of Fe6W6C by mechanical alloying. Hyperfine Interact 175(1–3):49–54CrossRefGoogle Scholar
  21. 21.
    Suryanarayana C (2001) Mechanical alloying and milling. Prog Mater Sci 46(1–2):1–184CrossRefGoogle Scholar
  22. 22.
    Wang Y, Zhu N, Wang H et al (2017) Interdiffusion and diffusion mobility for fcc Ni-Co-Al alloys. Metall Mater Trans A 48(3):943–947CrossRefGoogle Scholar
  23. 23.
    Weidow J, Johansson S, Andrén HO et al (2011) Transition metal solubilities in WC in cemented carbide materials. J Am Ceram Soc 94(2):605–610CrossRefGoogle Scholar
  24. 24.
    Liu S, Huang Z, Liu G et al (2006) Preparing nano-crystalline rare earth doped WC/Co powder by high energy ball milling. Int J Refract Metal Hard Mater 24(6):461–464CrossRefGoogle Scholar
  25. 25.
    Rios O, Cupid DM, Seifert HJ et al (2009) Characterization of the invariant reaction involving the L, η, γ and σ phases in the Ti–Al–Nb system. Acta Mater 57(20):6243–6250CrossRefGoogle Scholar
  26. 26.
    Kou S (2002) Welding metallurgy, 2nd edn. Wiley, Hoboken, pp 205–418CrossRefGoogle Scholar
  27. 27.
    Kim CS, Massa TR, Rohrer GS (2008) Interface character distributions in WC–Co composites. J Am Ceram Soc 91(3):996–1001CrossRefGoogle Scholar
  28. 28.
    ASM (2004) ASM handbook volume 9: metallography and microstructures. ASM International, Materials Park, OH, pp 125–249Google Scholar
  29. 29.
    Mannesson K, Jeppsson J, Borgenstam A et al (2011) Carbide grain growth in cemented carbides. Acta Mater 59(5):912–1923CrossRefGoogle Scholar
  30. 30.
    Yang DY, Yoon DY, Kang SJL (2011) Suppression of abnormal grain growth in WC–Co via two-step liquid phase sintering. J Am Ceram Soc 94(4):1019–1024CrossRefGoogle Scholar
  31. 31.
    Kim YS, Mceligot DM, Eagar TW (1991) Analyses of electrode heat transfer in gas metal arc welding. Weld J 70(1):20-s–31-sGoogle Scholar

Copyright information

© Springer Nature Singapore Pte Ltd. 2018

Authors and Affiliations

  1. 1.College of Materials Engineering, Shanghai University of Engineering ScienceShanghaiChina

Personalised recommendations