Liquid Metal Embrittlement of Galvanized Steels During Industrial Processing: A Review

  • Zhanxiang Ling
  • Min Wang
  • Liang Kong
Conference paper
Part of the Transactions on Intelligent Welding Manufacturing book series (TRINWM)


Liquid metal embrittlement is the cause of reduction of elongation to failure and early fracture if normally ductile metals or alloys are stressed while in contact with liquid metals. Scientists have confirmed that many solid steel-liquid metal couples are subject to liquid metal embrittlement, one of them is solid steel-liquid zinc. Due to the wide use of zinc-coated galvanized steels, this couple has drawn much attention. This paper briefly introduces liquid metal embrittlement, with emphasis on the solid steel-liquid zinc couple and its occurrence in the process of industrial production in the literature. We first reviewed the findings that galvanized steels suffer embrittlement during experimental hot tensile test to understand its fundamental characteristics. We then summarized the occurrence of liquid metal embrittlement in galvanized steels during industrial processing, such as hot-dip galvanizing, hot stamping and welding.


Liquid metal embrittlement Galvanized steel Hot tensile test Hot stamping Welding 



The authors would like to appreciate the financial support from The National Key Research and Development Program of China, No.2017YFB0304400.


  1. 1.
    Fernandes PJL, Jones DRH (1997) Mechanisms of liquid metal induced embrittlement. Int Mater Rev 42(6):251–261CrossRefGoogle Scholar
  2. 2.
    Nicholas MG, Old CF (1979) Liquid metal embrittlement. J Mater Sci 14(1):1–18CrossRefGoogle Scholar
  3. 3.
    Kamdar MH (1983) Liquid metal embrittlement. Treatise Mater Sci Technol 25(1):361–459CrossRefGoogle Scholar
  4. 4.
    Bauer KD, Todorova M, Hingerl K et al (2015) A first principles investigation of zinc induced embrittlement at grain boundaries in bcc iron. Acta Mater 90:69–76CrossRefGoogle Scholar
  5. 5.
    Sample T, Fenici P, Kolbe H (1996) Liquid metal embrittlement susceptibility of welded MANET II (DIN 1.4914) in liquid Pb-17Li. J Nucl Mater 233:244–247CrossRefGoogle Scholar
  6. 6.
    Legris A, Nicaise G, Vogt JB et al (2000) Embrittlement of a martensitic steel by liquid lead. Scripta Mater 43(11):997–1001CrossRefGoogle Scholar
  7. 7.
    Hojna A, Di Gabriele F, Klecka J (2016) Characteristics and liquid metal embrittlement of the steel T91 in contact with lead–bismuth eutectic. J Nucl Mater 472:163–170CrossRefGoogle Scholar
  8. 8.
    Padmanabhan B, Salunkhe P, Nage D (2015) Liquid metal embrittlement of austenitic stainless steel fitting caused by copper contamination. J Fail Anal Prev 15(4):480CrossRefGoogle Scholar
  9. 9.
    Hémery S, Auger T, Courouau JL et al (2014) Liquid metal embrittlement of an austenitic stainless steel in liquid sodium. Corros Sci 83:1–5CrossRefGoogle Scholar
  10. 10.
    Clegg RE, Jones DRH (2003) Liquid metal embrittlement of tensile specimens of En19 steel by tin. Eng Fail Anal 10(1):119–130CrossRefGoogle Scholar
  11. 11.
    Ding N, Xu N, Guo W et al (2016) Liquid metal induced embrittlement of a nitrided clutch shell of a motorbike. Eng Fail Anal 61:54–61CrossRefGoogle Scholar
  12. 12.
    Nandi V, Bhat RR, Yatisha IN et al (2012) Liquid-metal-induced embrittlement in turbine casing segment screws of an aeroengine. J Fail Anal Prev 12(4):348–353CrossRefGoogle Scholar
  13. 13.
    Kuklik V, Kudlacek J (2016) Hot-dip galvanizing of steel structures. Butterworth-Heinemann, Boston, pp 30, 170CrossRefGoogle Scholar
  14. 14.
    Marder AR (2000) The metallurgy of zinc-coated steel. Prog Mater Sci 45(3):191–271CrossRefGoogle Scholar
  15. 15.
    Kikuchi M (1980) Liquid metal embrittlement of steels by liquid zinc. J Soc Mater Sci 29(317):181–186CrossRefGoogle Scholar
  16. 16.
    Nakasa K, Takei H, Matsuda M (1988) Crack propagation behavior in liquid zinc embrittlement of mild steel. J Soc Mater Sci 37(413):166–170CrossRefGoogle Scholar
  17. 17.
    Kikuchi M, Lezawa T (1982) Effect of stress-concentration factor on liquid metal embrittlement cracking of steel in molten zinc. J Soc Mater Sci 31(352):271–276CrossRefGoogle Scholar
  18. 18.
    Kikuchi M (1981) Liquid metal embrittlement cracking of notched rectangular steel plate in molten zinc. J Soc Mater Sci 30(329):194–199CrossRefGoogle Scholar
  19. 19.
    Nakasa K, Takei H, Takemoto S (1984) Effects of tensile speed, testing temperature and ferrite grain size on liquid zinc embrittlement in precracked specimens of mild steel. J Soc Mater Sci 33(372):1193–1198CrossRefGoogle Scholar
  20. 20.
    Beal C, Kleber X, Fabregue D et al (2011) Liquid zinc embrittlement of a high-manganese-content TWIP steel. Philos Mag Lett 91(4):297–303CrossRefGoogle Scholar
  21. 21.
    Beal C, Kleber X, Fabregue D et al (2012) Embrittlement of a zinc coated high manganese TWIP steel. Mater Sci Eng A 543:76–83CrossRefGoogle Scholar
  22. 22.
    Beal C, Kleber X, Fabregue D et al (2012) Liquid zinc embrittlement of twinning-induced plasticity steel. Scripta Mater 66(12):1030–1033CrossRefGoogle Scholar
  23. 23.
    Mendala J (2012) Liquid metal embrittlement of steel with galvanized coatings. IOP conference series-materials science and engineering, vol 35. IOP Publishing, Bristol, pp 1–8Google Scholar
  24. 24.
    Barthelmie J et al (2016) Liquid metal embrittlement in resistance spot welding and hot tensile tests of surface-refined TWIP steels. In: IOP conference series-materials science and engineering, vol 118. IOP Publishing, Bristol, pp 1–8CrossRefGoogle Scholar
  25. 25.
    Frappier R et al (2014) Embrittlement of steels by liquid zinc: crack propagation after grain boundary wetting. In: Advanced materials research, vol 922. Trans Tech Publications, Zurich, pp 161–166CrossRefGoogle Scholar
  26. 26.
    Jung G, Woo IS, Suh DW et al (2016) Liquid Zn assisted embrittlement of advanced high strength steels with different microstructures. Met Mater Int 22(2):187–195CrossRefGoogle Scholar
  27. 27.
    Kang H, Cho L, Lee C et al (2016) Zn penetration in liquid metal embrittled TWIP steel. Metall Mater Trans A 47(6):2885–2905CrossRefGoogle Scholar
  28. 28.
    Schulz WD, Thiele M (2011) Hot-dip galvanizing and layer-formation technology. Handb Hot-Dip Galvanization 91–124Google Scholar
  29. 29.
    Mraz L, Lesay J (2009) Problems with reliability and safety of hot dip galvanized steel structures. Soldagem & Inspecao 14(2):184–190CrossRefGoogle Scholar
  30. 30.
    James MN (2009) Designing against LMAC in galvanised steel structures. Eng Fail Anal 16(4):1051–1061CrossRefGoogle Scholar
  31. 31.
    Carpio J, Casado JA, Álvarez JA et al (2009) Environmental factors in failure during structural steel hot-dip galvanizing. Eng Fail Anal 16(2):585–595CrossRefGoogle Scholar
  32. 32.
    Carpio J, Casado JA, Álvarez JA et al (2010) Stress corrosion cracking of structural steels immersed in hot-dip galvanizing baths. Eng Fail Anal 17(1):19–27CrossRefGoogle Scholar
  33. 33.
    Luithle A, Pohl M (2015) On the influence of cold deformation on liquid metal embrittlement of a steel in a liquid zinc bath. Mater Corros 66(12):1491–1497CrossRefGoogle Scholar
  34. 34.
    Karbasian H, Tekkaya AE (2010) A review on hot stamping. J Mater Process Technol 210(15):2103–2118CrossRefGoogle Scholar
  35. 35.
    Feng GW et al (2016) Microcacks in galvannealed hot stamping 22MnB5 steel. In: Advanced high strength steel and press hardening-proceedings of the 2nd international conference. World Scientific, Changsha, pp 110–114Google Scholar
  36. 36.
    Lee CW, Fan DW, Sohn IR et al (2012) Liquid-metal-induced embrittlement of Zn-coated hot stamping steel. Metall Mater Trans A 43(13):5122–5127CrossRefGoogle Scholar
  37. 37.
    Cho L, Kang H, Lee C et al (2014) Microstructure of liquid metal embrittlement cracks on Zn-coated 22MnB5 press-hardened steel. Scripta Mater 90:25–28CrossRefGoogle Scholar
  38. 38.
    Lee CW, Choi WS, Cho L et al (2015) Liquid-metal-induced embrittlement related microcrack propagation on Zn-coated press hardening steel. ISIJ Int 55(1):264–271CrossRefGoogle Scholar
  39. 39.
    Lee CW, De Cooman BC (2014) Microstructural evolution of the 55 Wt Pct Al-Zn coating during press hardening. Metall Mater Trans A 45(10):4499–4509CrossRefGoogle Scholar
  40. 40.
    Lee CW, Choi WS, Cho YR et al (2015) Microstructure evolution of a 55wt.% Al–Zn coating on press hardening steel during rapid heating. Surf Coat Technol 281:35–43CrossRefGoogle Scholar
  41. 41.
    Drillet P, Grigorieva R, Leuillier G et al (2013) Study of cracks propagation inside the steel on press hardened steel zinc based coatings. La Metallurgia Italiana 1:3–8Google Scholar
  42. 42.
    Kurz T, Luckeneder G, Manzenreiter T et al (2015) Zinc coated press-hardening steel-challenges and solutions. SAE technical paper No. 2015–01-0565Google Scholar
  43. 43.
    Kurz T, Larour P, Lackner J et al (2016) Press-hardening of zinc coated steel-characterization of a new material for a new process. In: IOP conference series-materials science and engineering, vol 159. IOP Publishing, Bristol, pp 1–16CrossRefGoogle Scholar
  44. 44.
    Seok HH, Mun JC, Kang CG (2015) Micro-crack in zinc coating layer on boron steel sheet in hot deep drawing process. Int J Precis Eng Manuf 16(5):919–927CrossRefGoogle Scholar
  45. 45.
    Sachdev AK, Brown TW (2015) Controlling liquid metal embrittlement in galvanized press-hardened components. US Patent Application 14/627,579Google Scholar
  46. 46.
    Zhang P, Xie J, Wang YX (2011) Effects of welding parameters on mechanical properties and microstructure of resistance spot welded DP600 joints. Sci Technol Weld Joining 16(7):567–574CrossRefGoogle Scholar
  47. 47.
    Gaul H, Weber G, Rethmeier M (2011) Influence of HAZ cracks on fatigue resistance of resistance spot welded joints made of advanced high strength steels. Sci Technol Weld Joining 16(5):440–445CrossRefGoogle Scholar
  48. 48.
    Wang XP, Zhang YQ, Ju JB et al (2016) Characteristics of welding crack defects and failure mode in resistance spot welding of DP780 steel. J Iron Steel Res Int 23(10):1104–1110CrossRefGoogle Scholar
  49. 49.
    Jia S, Zhang Y, Liu X et al (2015) Hot dip galvanized TRIP steel spot welding crack analysis. Electr Weld Mach 45(8):145–149Google Scholar
  50. 50.
    Wang X, Zhang Y, Ju J et al (2016) Effect of resistance spot welding process on welding spot crack defects of advanced high strength steel. Electr Weld Mach 46(6):96–100Google Scholar
  51. 51.
    Yan B, Zhu H, Lalam SH et al (2004) Spot weld fatigue of dual phase steels. SAE technical paper No. 2004-01-0511Google Scholar
  52. 52.
    Kim YG, Kim IJ, Kim JS et al (2014) Evaluation of surface crack in resistance spot welds of Zn-coated steel. Mater Trans 55(1):171–175MathSciNetCrossRefGoogle Scholar
  53. 53.
    Barthelmie J, Schram A, Wesling V (2016) Liquid metal embrittlement in resistance spot welding and hot tensile tests of surface-refined TWIP steels. IOP Conference Series-Materials Science and Engineering, vol 118. IOP Publishing, Bristol, pp 1–8Google Scholar
  54. 54.
    Tolf E, Hedegård J, Melander A (2013) Surface breaking cracks in resistance spot welds of dual phase steels with electrogalvanised and hot dip zinc coating. Sci Technol Weld Joining 18(1):25–31CrossRefGoogle Scholar
  55. 55.
    Ashiri R, Haque MA, Ji CW et al (2015) Supercritical area and critical nugget diameter for liquid metal embrittlement of Zn-coated twining induced plasticity steels. Scripta Mater 109:6–10CrossRefGoogle Scholar
  56. 56.
    Ashiri R, Shamanian M, Salimijazi HR et al (2016) Liquid metal embrittlement-free welds of Zn-coated twinning induced plasticity steels. Scripta Mater 114:41–47CrossRefGoogle Scholar
  57. 57.
    Bruscato RM (1992) Liquid metal embrittlement of austenitic stainless steel when welded to galvanized steel. Welding Journal 71:455s–459sGoogle Scholar
  58. 58.
    Mori H, Nishimoto K (2012) Effect of chromium and nickel contents on liquid zinc embrittlement in heat affected zone of austenitic steels. Q J Jpn Weld Soc 30(1):42–49CrossRefGoogle Scholar
  59. 59.
    Pańcikiewicz K, Tuz L, Zielińska-Lipiec A (2014) Zinc contamination cracking in stainless steel after welding. Eng Fail Anal 39:149–154CrossRefGoogle Scholar

Copyright information

© Springer Nature Singapore Pte Ltd. 2018

Authors and Affiliations

  1. 1.Shanghai Key Laboratory of Materials Laser Processing and ModificationShanghai Jiao Tong UniversityShanghaiChina
  2. 2.The State Key Laboratory of Metal Matrix CompositesShanghai Jiao Tong UniversityShanghaiChina

Personalised recommendations