Thermo-oxidative Decomposition Behavior of Polyamide 6 Nanocomposites with Structurally Different Clays

  • Indraneel Suhas Zope
Chapter
Part of the Springer Theses book series (Springer Theses)

Abstract

The primary focus of this chapter is to determine the influence of metal ions that are located at structural locations in clay lattice on the thermo-oxidative decomposition of PA6. For this purpose, different naturally occurring clays belonging to the same expandable smectite family and individually rich in specific metal ions (of interest) were chosen. They are MMT, Hec, and Nnt rich in octahedral Al3+, Mg2+, and Fe3+, respectively. As before, comparative and thorough condensed and gas phase analysis at different size scales is carried out. Even here in the case of structural ions, it is established that each clay displays different effect on decomposition of PA6 which in turn depends on principle metal ion present in their octahedral position.

References

  1. 1.
    M.E. Essington, Soil and Water Chemistry: An Integrative Approach (CRC Press Web, Boca Raton, FL, 2004)Google Scholar
  2. 2.
    H.A. Benesi, B.H.C. Winquist, Surface acidity of solid catalysts. In Advances in Catalysis, ed. D.D.E. Herman-Pines, P.B. Weisz (Academic Press, 1979), pp. 97–182Google Scholar
  3. 3.
    J. Bujdák, B.M. Rode, J. Mol. Catal. A: Chem. 144, 129–136 (1999)CrossRefGoogle Scholar
  4. 4.
    S. Yariv, K. Michaelian, Structure and surface acidity of clay minerals. In Organo-Clay Complexes and Interactions, ed. by S. Yariv, H. Cross (Marcel Dekker AG, NY, 2002, Chapter 1), pp. 1–38Google Scholar
  5. 5.
    X. Liu, X. Lu, M. Sprik, J. Cheng, E.J. Meijer, R. Wang, Geochim. Cosmochim. Acta 117, 180–190 (2013)CrossRefGoogle Scholar
  6. 6.
    B.R. Bickmore, D. Bosbach, M.F. Hochella, L. Charlet, E. Rufe, Am. Mineral. 86, 411–423 (2001)CrossRefGoogle Scholar
  7. 7.
    D. Liu, P. Yuan, H. Liu, J. Cai, D. Tan, H. He, J. Zhu, T. Chen, Appl. Clay Sci. 80–81, 407–412 (2013)CrossRefGoogle Scholar
  8. 8.
    M. Fernández, M.D. Alba, R.M. Torres, Sánchez. Colloids Surf. A 423, 1–10 (2013)CrossRefGoogle Scholar
  9. 9.
    M. Frenkel, Clays Clay Miner. 22, 435–441 (1974)CrossRefGoogle Scholar
  10. 10.
    M.M. Mortland, Clay-organic complexes and interactions. in Advances in Agronomy, ed. N.C. Brady (Academic Press, 1970), pp. 75–117Google Scholar
  11. 11.
    I.S. Zope, A. Dasari, G. Camino, Mater. Chem. Phys. 157, 69–79 (2015)CrossRefGoogle Scholar
  12. 12.
    J.T. Kloprogge, R.L. Frost, L. Hickey, Thermochim. Acta. 345, 145–156 (2000)CrossRefGoogle Scholar
  13. 13.
    J.T. Kloprogge, S. Komarneni, K. Yanagisawa, R. Fry, R.L. Frost, J. Colloid Interface Sci. 212, 562–569 (1999)CrossRefGoogle Scholar
  14. 14.
    L. Heller-Kallai, I. Rozenson, Clays Clay Mineral. 28, 355–368 (1980)CrossRefGoogle Scholar
  15. 15.
    R.E. Grim, G. Kulbicki, Am. Mineral. 46, 1329–1369 (1961)Google Scholar
  16. 16.
    J. Bujdák, B. Rode, J. Mol. Evol. 43, 326–333 (1996)CrossRefGoogle Scholar
  17. 17.
    S. Yariv, M. Borisover, I. Lapides, J. Therm. Anal. Calorim. 105, 897–906 (2011)CrossRefGoogle Scholar
  18. 18.
    W.C. Isphording, The. Am. Mineral. 60, 840–848 (1975)Google Scholar
  19. 19.
    H.W.P. Carvalho, C.V. Santilli, V. Briois, S.H. Pulcinelli, RSC Adv. 3, 22830–22833 (2013)CrossRefGoogle Scholar
  20. 20.
    Z. Gerstl, A. Banin, Clays Clay Mineral. 28, 335–345 (1980)CrossRefGoogle Scholar
  21. 21.
    S.M. Mrayed, Q.H. Zeng, ABYu. Comput, Mater. Sci. 46, 942–949 (2009)Google Scholar
  22. 22.
    S. Yariv, Int. Rev. Phys. Chem. 11, 345–375 (1992)CrossRefGoogle Scholar
  23. 23.
    C.C. Chou, J.L.J. McAtee, Clays Clay Mineral. 17, 339–346 (1969)CrossRefGoogle Scholar
  24. 24.
    S. Yariv, in Organo-Clay Complexes and Interactions, ed. by S. Yariv, H. Cross (Marcel Dekker, Inc., New York, 2002), p. 463Google Scholar
  25. 25.
    E.G. Garrido-Ramírez, B.K.G. Theng, M.L. Mora, Appl. Clay Sci. 47, 182–192 (2010)CrossRefGoogle Scholar
  26. 26.
    E. Richaud, O. Okamba Diogo, B. Fayolle, J. Verdu, J. Guilment, F. Fernagut. Polym. Degrad. Stab. 98, 1929–1939 (2013)Google Scholar
  27. 27.
    E. Richaud, F. Farcas, B. Fayolle, L. Audouin, J. Verdu. Polym. Degrad. Stab. 92, 118–124 (2007)Google Scholar
  28. 28.
    W. Dong, P. Gijsman, Polym. Degrad. Stab. 95, 1054–1062 (2010)CrossRefGoogle Scholar

Copyright information

© Springer Nature Singapore Pte Ltd. 2018

Authors and Affiliations

  • Indraneel Suhas Zope
    • 1
  1. 1.School of Materials Science and EngineeringNanyang Technological UniversitySingaporeSingapore

Personalised recommendations