Decomposition Behavior of Metal-Ion Exchanged Clays

  • Indraneel Suhas Zope
Part of the Springer Theses book series (Springer Theses)


This chapter deals with exploring the effect of different metal ions like Mg2+, Al3+, and Fe3+ present in/on MI-clays in altering the kinetics and/or decomposition mechanism of organic modifier, HDTMA-Br. The catalytic activity is seen to be a combined effect of Brønsted and Lewis acid characters associated with the metal ions. The effect varies significantly with the predominant cation in organically modified MI-clays (OMI-clays). Knowing the effect of each metal ion separately, the correlation between clay structural chemistry and organic decomposition onset is established.


  1. 1.
    J. Humphrey, D. Boyd, Clay; Types, Properties and Uses (Nova Science Publishers Inc, New York, 2011)Google Scholar
  2. 2.
    C. Ravindra Reddy, G. Nagendrappa, B.S. Jai Prakash. Catal. Commun. 8, 241–246 (2007)Google Scholar
  3. 3.
    C. Breen, A. Moronta, J. Phys. Chem. B. 104, 2702–2708 (2000)CrossRefGoogle Scholar
  4. 4.
    P. Nawani, M.Y. Gelfer, B.S. Hsiao, A. Frenkel, J.W. Gilman, S. Khalid, Langmuir 23, 9808–9815 (2007)CrossRefGoogle Scholar
  5. 5.
    B. Thomas, V.G. Ramu, S. Gopinath, J. George, M. Kurian, G. Laurent, G.L. Drisko, S. Sugunan, Appl. Clay Sci. 53, 227–235 (2011)CrossRefGoogle Scholar
  6. 6.
    A.G. Zestos, C.L. Grinnell, L.J. Vinh, R.D. Pike, W.H. Starnes, J. Vinyl Addit. Technol. 15, 87–91 (2009)Google Scholar
  7. 7.
    F. Bergaya, G. Lagaly, Handbook of Clay Science Part A: Fundamentals, vol. 5A, 2nd edn., (Elsevier, Oxford, 2013)Google Scholar
  8. 8.
    C.N. Rhodes, D.R. Brown, J. Chem. Soc., Faraday Trans. 91, 1031–1035 (1995)CrossRefGoogle Scholar
  9. 9.
    P. Misaelides, F. Macasek, T. Pinnavaia, C. Colella, Natural Microporous Materials in Environmental Technology, vol. 362 (Springer Science+Business Media, B.V., Dordrecht, 1999)Google Scholar
  10. 10.
    V. Balek, Z. Málek, S. Yariv, G. Matuschek, J. Therm. Anal. Calorim. 56, 67–76 (1999)CrossRefGoogle Scholar
  11. 11.
    Y. Li, X. Wang, J. Wang, J. Therm. Anal. Calorim. 110, 1199–1206 (2012)CrossRefGoogle Scholar
  12. 12.
    G. Wulfsberg, Inorganic Chemistry (University Science Books, Sausalito, CA, 2000)Google Scholar
  13. 13.
    S.J. Hawkes, J. Chem. Educ. 73, 516 (1996)CrossRefGoogle Scholar
  14. 14.
    I. Persson, Pure Appl. Chem. 82, 1901–1917 (2010)CrossRefGoogle Scholar
  15. 15.
    S.S. Lee, P. Fenter, C. Park, N.C. Sturchio, K.L. Nagy, Langmuir 26, 16647–16651 (2010)CrossRefGoogle Scholar
  16. 16.
    V. Balek, M. Beneŝ, J. Ŝubrt, J.L. Pérez-Rodriguez, P.E. Sánchez-Jiménez, L.A. Pérez-Maqueda, J. Pascual-Cosp, J. Therm. Anal. Calorim. 92, 191–197 (2008)CrossRefGoogle Scholar
  17. 17.
    P.J. Wallis, A.L. Chaffee, W.P. Gates, A.F. Patti, J.L. Scott, Langmuir 26, 4258–4265 (2009)CrossRefGoogle Scholar
  18. 18.
    W. Grzybkowski, Pol. J. Environ. Stud. 15, 655–663 (2006)Google Scholar
  19. 19.
    B.J. Teppen, V. Aggarwal, Clays Clay Miner. 55, 119–130 (2007)CrossRefGoogle Scholar
  20. 20.
    R. Calvet, Hydration de la montmorillonite et diffusion des cations compensateurs (Universite de Paris VI (Pierre et Marie Curie) (France), Ann Arbor, Dr., 1972)Google Scholar
  21. 21.
    J.J. Fripiat, Mi Cruzcump, Annu. Rev. Earth Planet. Sci. 2, 239–256 (1974)CrossRefGoogle Scholar
  22. 22.
    C. Breen, A. Deane, J. Flynn, Clay Miner. 22, 169–178 (1987)CrossRefGoogle Scholar
  23. 23.
    B. Wang, M. Zhou, Z. Rozynek, J.O. Fossum, J. Mater. Chem. 19, 1816–1828 (2009)CrossRefGoogle Scholar
  24. 24.
    W. Xie, Z. Gao, W.-P. Pan, D. Hunter, A. Singh, R. Vaia, Chem. Mater. 13, 2979–2990 (2001)CrossRefGoogle Scholar
  25. 25.
    J. Madejova, H. Palkova, P. Komadel, IR spectroscopy of clay minerals and clay nanocomposites. in Spectroscopic Properties of Inorganic and Organometallic Compounds: Techniques, Materials and Applications, vol. 41 (The Royal Society of Chemistry, 2010), pp. 22–71Google Scholar
  26. 26.
    J.L. Bishop, C.M. Pieters, J.O. Edwards, Clays Clay Miner. 42, 702–716 (1994)CrossRefGoogle Scholar
  27. 27.
    F. Bellucci, G. Camino, A. Frache, A. Sarra, Polym. Degrad. Stab. 92, 425–436 (2007)CrossRefGoogle Scholar
  28. 28.
    H. Zweifel, Stabilization of Polymeric Materials (Springer-Verlag, Berlin Heidelberg, Berlin Heidelberg, 1998)CrossRefGoogle Scholar
  29. 29.
    S.W. Benson, Prog. Energy Combust. Sci. 7, 125–134 (1981)CrossRefGoogle Scholar
  30. 30.
    S.W. Benson, P.S. Nangia, Acc. Chem. Res. 12, 223–228 (1979)CrossRefGoogle Scholar
  31. 31.
    R. Song, Y. Fu, B. Li, J. Appl. Polym. Sci. 129, 138–144 (2013)CrossRefGoogle Scholar

Copyright information

© Springer Nature Singapore Pte Ltd. 2018

Authors and Affiliations

  • Indraneel Suhas Zope
    • 1
  1. 1.School of Materials Science and EngineeringNanyang Technological UniversitySingaporeSingapore

Personalised recommendations