Advertisement

Literature Review

  • Indraneel Suhas Zope
Chapter
Part of the Springer Theses book series (Springer Theses)

Abstract

This chapter reviews the literature concerning fundamentals of combustion and fire retardancy of polymer/clay nanocomposites. Different commercial fire retardant systems and their limitations have been reviewed. The importance of eco-benign fire retardant has been provided to justify the need of this research work for polymer/clay nanocomposites. Structural details of clay have been discussed followed by a detailed review on the influence of clays on various stages of combustion and corresponding theories associated with polymer/clay nanocomposites is furnished.

References

  1. 1.
    M. Hirschler, Fire performance of organic polymers, thermal decomposition, and chemical composition. in Fire and Polymers: Materials and Solution for Hazard Prevention, vol. 797, ed. G.L. Nelson, C.A. Wilkie (American Chemical Society, Washington, DC, 2001), pp. 293–306Google Scholar
  2. 2.
    D.J. Irvine, J.A. McCluskey, I.M. Robinson, Polym. Degrad. Stab. 67, 383–396 (2000)CrossRefGoogle Scholar
  3. 3.
    M.J. Karter, Fire loss in the United States during 2010 (National Fire Protection Association, Fire Analysis and Research Division, Quincy (MA), Quincy (MA), 2011)Google Scholar
  4. 4.
    A.B. Morgan, J.W. Gilman, Fire Mater. 37, 259–279 (2013)CrossRefGoogle Scholar
  5. 5.
    M. Ahrens, Home structure fires (National Fire Protection Association, Quincy (MA), 2011)Google Scholar
  6. 6.
  7. 7.
    Flame Retardant Chemicals: Technologies & Global Markets Report code: CHM014 M; April 2015Google Scholar
  8. 8.
    Flame Retardants Integral to Fire Safety: Public Transport. http://www.cefic-efra.com
  9. 9.
    D. Price, G. Anthony, P. Carty, Introduction: polymer combustion, condensed phase pyrolysis and smoke formation, in Fire Retardant Materials, ed. by A.R. Horrocks, D. Price (Woodhead Publishing Ltd., Cambridge, UK, 2001), pp. 1–30Google Scholar
  10. 10.
    M.M. Hirschler, Chemical aspects of thermal decomposition of polymeric materials, in Fire Retardancy Of Polymeric Materials, ed. by A.F. Grand, C.A. Wilkie (Marcel Dekker Inc., New York, 2000), pp. 28–79Google Scholar
  11. 11.
    T. Kashiwagi, Symp. (Int.) Combust. 25, 1423–1437 (1994)CrossRefGoogle Scholar
  12. 12.
    A.P. Mouritz, A.G. Gibson, Fire Properties of Polymer Composite Materials (Springer, Dordrecht, 2006)Google Scholar
  13. 13.
    C. F. Cullis, M. M. Hirschler, The Combustion of Organic Polymers. (Clarendon Press, New York; Oxford University Press: Oxford, 1981)Google Scholar
  14. 14.
    Federal Emergency Management Agency; www.usfa.fema.gov
  15. 15.
    A. Witkowski, A.A. Stec, T.R. Hull, Thermal decomposition of polymeric materials. in SFPE Handbook of Fire Protection Engineering, 5th edn., ed. by M. Hurley (Springer, Berlin, 2016), pp. 167–254CrossRefGoogle Scholar
  16. 16.
    C.M. Lewin, E.D. Weil, Mechanisms and modes of action in flame retardancy of polymers, in Fire retardant materials, ed. by A.R. Horrocks, D. Price (Woodhead Publishing, Cambridge UK, 2001), pp. 31–68CrossRefGoogle Scholar
  17. 17.
    J. Green, J. Fire Sci. 14, 426–442 (1996)CrossRefGoogle Scholar
  18. 18.
    G.L. Nelson, Recycling of plastics - a new FR challenge. in The Future of Fire Retarded Materials: Application and Regulations (Williamsburg VA, 1994), pp. 135–143Google Scholar
  19. 19.
    A.B. Morgan Current Trends in Flame Retardants for Thermoplastics. http://www.plasticstrends.net
  20. 20.
    S.Y. Lu, I. Hamerton, Prog. Polym. Sci. 27, 1661–1712 (2002)CrossRefGoogle Scholar
  21. 21.
    S.V. Levchik, E.D. Weil, J. Fire Sci. 24, 345–364 (2006)CrossRefGoogle Scholar
  22. 22.
    K.S. Betts, Environ. Health Perspect. 116, A210–A213 (2008)Google Scholar
  23. 23.
    P.R. Hornsby, Macromolecular Symposia. 108, 203–219 (1996)CrossRefGoogle Scholar
  24. 24.
    R.N. Rothon, P.R. Hornsby, Polym. Degrad. Stab. 54, 383–385 (1996)CrossRefGoogle Scholar
  25. 25.
    U. Fink, The market situation, in Plastics Flammability Handbook, ed. by J. Troitzsch (Carl Hanser Verlag, Munich Germany, 2004), pp. 8–32CrossRefGoogle Scholar
  26. 26.
    S.V. Levchik, Introduction to flame retardancy and polymer flammability. in Flame Retardant Polymer Nanocomposites, ed. by A.B. Morgan, C.A. Wilkie (Wiley-Interscience, John Wiley & Sons Inc., Hoboken, NJ, 2007), pp. 1–30Google Scholar
  27. 27.
    B. Bann, S.A. Miller, Chem. Rev. 58, 131–172 (1958)CrossRefGoogle Scholar
  28. 28.
    L. Costa, G. Camino, M.L.d. Cortemiglia, Mechanism of thermal degradation of fire-retardant melamine salts. in Fire and Polymers: Hazard Identification and Prevention, vol. 425, ed. by G.L. Nelson (American Chemical Society, Washington DC, 1990), pp 211–238Google Scholar
  29. 29.
    S.V. Levchik, G.F. Levchik, A.I. Balabanovich, E.D. Weil, M. Klatt, Angew. Makromolek. Chem. 264, 48–55 (1999)CrossRefGoogle Scholar
  30. 30.
    S.V. Levchik, A.I. Balabanovich, G.F. Levchik, L. Costa, Fire Mater. 21, 75–83 (1997)CrossRefGoogle Scholar
  31. 31.
    S. Bourbigot, M. Le Bras, S. Duquesne, M. Rochery, Macromol. Mater. Eng. 289, 499–511 (2004)CrossRefGoogle Scholar
  32. 32.
    S. Bourbigot, M.L. Bras, F. Dabrowski, J.W. Gilman, T. Kashiwagi, Fire Mater. 24, 201–208 (2000)CrossRefGoogle Scholar
  33. 33.
    G. Bertelli, G. Camino, E. Marchetti, L. Costa, E. Casorati, R. Locatelli, Polym. Degrad. Stab. 25, 277–292 (1989)CrossRefGoogle Scholar
  34. 34.
    G. Camino, L. Costa, G. Martinasso, Polym. Degrad. Stab. 23, 359–376 (1989)CrossRefGoogle Scholar
  35. 35.
    J.W. Gilman, Appl. Clay Sci. 15, 31–49 (1999)CrossRefGoogle Scholar
  36. 36.
    D.B.J. Humphrey, Clay; Types, Properties and Uses (Nova Science Publishers Inc, New York, 2011)Google Scholar
  37. 37.
    H. Wanner, Y. Albinsson, O. Karnland, E. Wieland, P. Wersin, L. Charlet, Radiochim. Acta 66(67), 157–162 (1994)Google Scholar
  38. 38.
    S. Bourbigot, J.W. Gilman, C.A. Wilkie, Polym. Degrad. Stab. 84, 483–492 (2004)CrossRefGoogle Scholar
  39. 39.
    M. Zanetti, G. Camino, P. Reichert, R. Mülhaupt, Macromol. Rapid Commun. 22, 176–180 (2001)CrossRefGoogle Scholar
  40. 40.
    M. Alexandre, P. Dubois, Mater. Sci. Eng. R-Rep. 28, 1–63 (2000)CrossRefGoogle Scholar
  41. 41.
    C.L. Beyler, M.M. Hirschler, Thermal Decomposition of Polymers, vol. 1 (Society of Fire Protection Engineers, Boston, MA), pp. 110–131Google Scholar
  42. 42.
    M.C. Costache, D.D. Jiang, C.A. Wilkie, Polymer 46, 6947–6958 (2005)CrossRefGoogle Scholar
  43. 43.
    J. Zhu, F.M. Uhl, A.B. Morgan, C.A. Wilkie, Chem. Mater. 13, 4649–4654 (2001)CrossRefGoogle Scholar
  44. 44.
    H.W.P. Carvalho, C.V. Santilli, V. Briois, S.H. Pulcinelli, RSC Adv. 3, 22830–22833 (2013)CrossRefGoogle Scholar
  45. 45.
    S.M. Lomakin, I.L. Dubnikova, A.N. Shchegolikhin, G.E. Zaikov, R. Kozlowski, G.M. Kim, G.H. Michler, J. Therm. Anal. Calorim. 94, 719–726 (2008)CrossRefGoogle Scholar
  46. 46.
    H. Qin, S. Zhang, C. Zhao, M. Yang, J. Polym. Sci., Part B: Polym. Phys. 43, 3713–3719 (2005)CrossRefGoogle Scholar
  47. 47.
    M.C. Costache, D. Wang, M.J. Heidecker, E. Manias, C.A. Wilkie, Polym. Adv. Technol. 17, 272–280 (2006)CrossRefGoogle Scholar
  48. 48.
    J. Zhu, P. Start, K.A. Mauritz, C.A. Wilkie, Polym. Degrad. Stab. 77, 253–258 (2002)CrossRefGoogle Scholar
  49. 49.
    B.N. Jang, C.A. Wilkie, Polymer 46, 3264–3274 (2005)CrossRefGoogle Scholar
  50. 50.
    B.N. Jang, C.A. Wilkie, Polymer 46, 2933–2942 (2005)CrossRefGoogle Scholar
  51. 51.
    B.N. Jang, M. Costache, C.A. Wilkie, Polymer 46, 10678–10687 (2005)CrossRefGoogle Scholar
  52. 52.
    B.N. Jang, C.A. Wilkie, Polymer 46, 9702–9713 (2005)CrossRefGoogle Scholar
  53. 53.
    Z.M. Liang, C.Y. Wan, Y. Zhang, P. Wei, J. Yin, J. Appl. Polym. Sci. 92, 567–575 (2004)CrossRefGoogle Scholar
  54. 54.
    Y. Wu, H. Huang, W. Zhao, H. Zhang, Y. Wang, L. Zhang, J. Appl. Polym. Sci. 107, 3318–3324 (2008)CrossRefGoogle Scholar
  55. 55.
    A.B. Morgan, L.-L. Chu, J.D. Harris, Fire Mater. 29, 213–229 (2005)CrossRefGoogle Scholar
  56. 56.
    Y. Tang, Y. Hu, S. Wang, Z. Gui, Z. Chen, W. Fan, Polym. Degrad. Stab. 78, 555–559 (2002)CrossRefGoogle Scholar
  57. 57.
    R. Zong, Y. Hu, N. Liu, S. Li, G. Liao, J. Appl. Polym. Sci. 104, 2297–2303 (2007)CrossRefGoogle Scholar
  58. 58.
    M. Zanetti, L. Costa, Polymer 45, 4367–4373 (2004)CrossRefGoogle Scholar
  59. 59.
    S. Solarski, F. Mahjoubi, M. Ferreira, E. Devaux, P. Bachelet, S. Bourbigot, R. Delobel, P. Coszach, M. Murariu, A. silva Ferreira, M. Alexandre, P. Degee, P. Dubois, J. Mater. Sci. 42, 5105–5117 (2007)CrossRefGoogle Scholar
  60. 60.
    H. Qin, S. Zhang, C. Zhao, G. Hu, M. Yang, Polymer 46, 8386–8395 (2005)CrossRefGoogle Scholar
  61. 61.
    A. Fina, G. Camino, Polym. Adv. Technol. 22, 1147–1155 (2011)CrossRefGoogle Scholar
  62. 62.
    T. Kashiwagi, R.H. Harris Jr., X. Zhang, R.M. Briber, B.H. Cipriano, S.R. Raghavan, W.H. Awad, J.R. Shields, Polymer 45, 881–891 (2004)CrossRefGoogle Scholar
  63. 63.
    B.B. Marosfői, G.J. Marosi, A. Szép, P. Anna, S. Keszei, B.J. Nagy, H. Martvonova, I.E. Sajó, Polym. Adv. Technol. 17, 255–262 (2006)CrossRefGoogle Scholar
  64. 64.
    W. Xie, Z. Gao, W.-P. Pan, D. Hunter, A. Singh, R. Vaia, Chem. Mater. 13, 2979–2990 (2001)CrossRefGoogle Scholar
  65. 65.
    F. Bellucci, G. Camino, A. Frache, A. Sarra, Polym. Degrad. Stab. 92, 425–436 (2007)CrossRefGoogle Scholar
  66. 66.
    R. Song, Z. Wang, X. Meng, B. Zhang, T. Tang, J. Appl. Polym. Sci. 106, 3488–3494 (2007)CrossRefGoogle Scholar
  67. 67.
    A. Vaccari, Appl. Clay Sci. 14, 161–198 (1999)CrossRefGoogle Scholar
  68. 68.
    C. Breen, A. Moronta, J. Phys. Chem. B. 104, 2702–2708 (2000)CrossRefGoogle Scholar
  69. 69.
    P. Misaelides, F. Macasek, T. Pinnavaia, C. Colella, Natural Microporous Materials in Environmental Technology, vol. 362 (Springer Science + Business Media, B.V., Dordrecht, 1999)Google Scholar
  70. 70.
    P. Komadel, M. Janek, J. Madejova, A. Weekes, C. Breen, J. Chem. Soc., Faraday Trans. 93, 4207–4210 (1997)CrossRefGoogle Scholar
  71. 71.
    C.N. Rhodes, D.R. Brown, J. Chem. Soc., Faraday Trans. 91, 1031–1035 (1995)CrossRefGoogle Scholar
  72. 72.
    T. Lan, P.D. Kaviratna, T.J. Pinnavaia, J. Phys. Chem. Solids 57, 1005–1010 (1996)CrossRefGoogle Scholar
  73. 73.
    K.A. Carrado, L. Xu, Chem. Mater. 10, 1440–1445 (1998)CrossRefGoogle Scholar
  74. 74.
    J.W. Gilman, W.H. Awad, R.D. Davis, J. Shields, R.H. Harris, C. Davis, A.B. Morgan, T.E. Sutto, J. Callahan, P.C. Trulove, H.C. DeLong, Chem. Mater. 14, 3776–3785 (2002)CrossRefGoogle Scholar
  75. 75.
    J. Zhu, A.B. Morgan, F.J. Lamelas, C.A. Wilkie, Chem. Mater. 13, 3774–3780 (2001)CrossRefGoogle Scholar
  76. 76.
    G. Chigwada, D. Wang, C.A. Wilkie, Polym. Degrad. Stab. 91, 848–855 (2006)CrossRefGoogle Scholar
  77. 77.
    N. Hasegawa, H. Okamoto, M. Kato, A. Usuki, N. Sato, Polymer 44, 2933–2937 (2003)CrossRefGoogle Scholar
  78. 78.
    Z.-Z. Yu, G.-H. Hu, J. Varlet, A. Dasari, Y.-W. Mai, J. Polym. Sci., Part B: Polym. Phys. 43, 1100–1112 (2005)CrossRefGoogle Scholar
  79. 79.
    Y. Shi, T. Kashiwagi, R.N. Walters, J.W. Gilman, R.E. Lyon, D.Y. Sogah, Polymer 50, 3478–3487 (2009)CrossRefGoogle Scholar
  80. 80.
    T.H. Milliken, A.G. Oblad, G.A. Mills, Clays Clay Miner. 1, 314–326 (1952)CrossRefGoogle Scholar
  81. 81.
    Y. Cai, F. Huang, Q. Wei, L. Song, Y. Hu, Y. Ye, Y. Xu, W. Gao, Polym. Degrad. Stab. 93, 2180–2185 (2008)CrossRefGoogle Scholar
  82. 82.
    A. Dasari, Z.-Z. Yu, G.-P. Cai, Y.-W. Mai, Prog. Polym. Sci. 38, 1357–1387 (2013)CrossRefGoogle Scholar
  83. 83.
    M.A. Corres, M. Zubitur, M. Cortazar, A. Mugica, Polym. Degrad. Stab. 98, 818–828 (2013)CrossRefGoogle Scholar
  84. 84.
    R.D. Davis, J.W. Gilman, D.L. VanderHart, Polym. Degrad. Stab. 79, 111–121 (2003)CrossRefGoogle Scholar
  85. 85.
    T.D. Fornes, P.J. Yoon, D.R. Paul, Polymer 44, 7545–7556 (2003)CrossRefGoogle Scholar
  86. 86.
    M. Lewin, Fire Mater. 27, 1–7 (2003)CrossRefGoogle Scholar
  87. 87.
    J. Hao, M. Lewin, C.A. Wilkie, J. Wang. Polym. Degrad. Stab. 91, 2482–2485 (2006)Google Scholar
  88. 88.
    M. Lewin, Polym. Adv. Technol. 17, 758–763 (2006)CrossRefGoogle Scholar
  89. 89.
    M. Lewin, E.M. Pearce, K. Levon, A. Mey-Marom, M. Zammarano, C.A. Wilkie, B.N. Jang, Polym. Adv. Technol. 17, 226–234 (2006)CrossRefGoogle Scholar
  90. 90.
    Y. Tang, M. Lewin, Polym. Degrad. Stab. 93, 1986–1995 (2008)CrossRefGoogle Scholar
  91. 91.
    T. Kashiwagi, R. Danyus, M. Liu, M. Zammarano, J.R. Shields, Polym. Degrad. Stab. 94, 2028–2035 (2009)CrossRefGoogle Scholar
  92. 92.
    A. González, A. Dasari, B. Herrero, E. Plancher, J. Santarén, A. Esteban, S.-H. Lim, Polym. Degrad. Stab. 97, 248–256 (2012)CrossRefGoogle Scholar
  93. 93.
    S. Sinha Ray, M. Okamoto. Prog. Polym. Sci. 28, 1539–1641 (2003)Google Scholar
  94. 94.
    K. Shanmuganathan, S. Deodhar, N.A. Dembsey, Q. Fan, P.K. Patra, Polym. Eng. Sci. 48, 662–675 (2008)CrossRefGoogle Scholar
  95. 95.
    J.W. Gilman, Flame retardant mechanism of polymer-clay nanocomposites. in Flame Retardant Polymer Nanocomposites, ed. by A.B. Morgan, C.A. Wilkie (Wiley-Interscience, John Wiley & Sons Inc., Hoboken, NJ, 2007), pp. 67–88Google Scholar
  96. 96.
    F. Gao, G. Beyer, Q. Yuan, Polym. Degrad. Stab. 89, 559–564 (2005)CrossRefGoogle Scholar
  97. 97.
    G. Beyer, Fire Mater. 29, 61–69 (2005)CrossRefGoogle Scholar
  98. 98.
    N. Huang, J. He, J. Du, J. Wang, J. Fire Sci. 30, 256–269 (2012)CrossRefGoogle Scholar
  99. 99.
    K.K. Shen, S. Kochesfahani, F. Jouffret, Polym. Adv. Technol. 19, 469–474 (2008)CrossRefGoogle Scholar
  100. 100.
    A. Dasari, Z.-Z. Yu, Y.-W. Mai, G. Cai, H. Song, Polymer 50, 1577–1587 (2009)CrossRefGoogle Scholar
  101. 101.
    W.J. Kroenke, J. Mater. Sci. 21, 1123–1133 (1986)CrossRefGoogle Scholar
  102. 102.
    B. Schartel, M. Bartholmai, U. Knoll, Polym. Degrad. Stab. 88, 540–547 (2005)CrossRefGoogle Scholar
  103. 103.
    D.W. van Krevelen, Polymer 16, 615–620 (1975)CrossRefGoogle Scholar
  104. 104.
    C. Wilkie, S. Levchik, G. Levchik, Is there a correlation between crosslinking and thermal stability?, in Speciality Polymer Additives: Principles and Application, ed. by S. Al-Malaika, A. Golovoy, C. Wilkie (Blackwell Science, Oxford, UK, 2001), pp. 359–374Google Scholar
  105. 105.
    S.W. Benson, P.S. Nangia, Acc. Chem. Res. 12, 223–228 (1979)CrossRefGoogle Scholar
  106. 106.
    P.S. Nangia, S.W. Benson, Int. J. Chem. Kinet. 12, 43–53 (1980)CrossRefGoogle Scholar
  107. 107.
    P.S. Nangia, S.W. Benson, Int. J. Chem. Kinet. 12, 29–42 (1980)CrossRefGoogle Scholar
  108. 108.
    S.W. Benson, Prog. Energy Combust. Sci. 7, 125–134 (1981)CrossRefGoogle Scholar
  109. 109.
    M. Zanetti, P. Bracco, L. Costa, Polym. Degrad. Stab. 85, 657–665 (2004)CrossRefGoogle Scholar
  110. 110.
    M. Zanetti, G. Camino, R. Thomann, R. Mülhaupt, Polymer 42, 4501–4507 (2001)CrossRefGoogle Scholar
  111. 111.
    J. Zhu, M.A. McKinney, C.A. Wilkie, Polym. Degrad. Stab. 66, 213–220 (1999)CrossRefGoogle Scholar
  112. 112.
    Z. Wang, D.D. Jiang, C.A. Wilkie, J.W. Gilman, Polym. Degrad. Stab. 66, 373–378 (1999)CrossRefGoogle Scholar
  113. 113.
    Y. Ning, S. Guo, J. Appl. Polym. Sci. 77, 3119–3127 (2000)CrossRefGoogle Scholar
  114. 114.
    K. Chen, C.A. Wilkie, S. Vyazovkin, J. Phys. Chem. B. 111, 12685–12692 (2007)CrossRefGoogle Scholar
  115. 115.
    H. Ma, L. Tong, Z. Xu, Z. Fang, Appl. Clay Sci. 42, 238–245 (2008)CrossRefGoogle Scholar
  116. 116.
    G. Cai, A. Dasari, Z.-Z. Yu, X. Du, S. Dai, Y.-W. Mai, J. Wang. Polym. Degrad. Stab. 95, 845–851 (2010)Google Scholar
  117. 117.
    T.R. Hull, D. Price, Y. Liu, C.L. Wills, J. Brady. Polym. Degrad. Stab. 82, 365–371 (2003)Google Scholar
  118. 118.
    Y. Cai, N. Wu, Q. Wei, K. Zhang, Q. Xu, W. Gao, L. Song, Y. Hu, Surf. Coat. Technol. 203, 264–270 (2008)CrossRefGoogle Scholar
  119. 119.
    K. Prakalathan, S. Mohanty, S.K. Nayak, J. Reinf. Plast. Compos. 31, 1300–1310 (2012)CrossRefGoogle Scholar
  120. 120.
    P. Nawani, P. Desai, M. Lundwall, M.Y. Gelfer, B.S. Hsiao, M. Rafailovich, A. Frenkel, A.H. Tsou, J.W. Gilman, S. Khalid, Polymer 48, 827–840 (2007)CrossRefGoogle Scholar
  121. 121.
    S. Levchik, C. Wilkie, Char formation, in Fire Retardancy of Polymeric Materials, ed. by A.F. Grand, C. Wilkie (Marcel Dekker, New York, 2000), pp. 171–215Google Scholar
  122. 122.
    T.R. Hull, A.A. Stec, K. Lebek, D. Price, Polym. Degrad. Stab. 92, 2239–2246 (2007)CrossRefGoogle Scholar
  123. 123.
    A.A. Stec, J. Rhodes. Polym. Degrad. Stab. 96, 295–300 (2011)CrossRefGoogle Scholar
  124. 124.
    H. Qin, S. Zhang, C. Zhao, M. Feng, M. Yang, Z. Shu, S. Yang, Polym. Degrad. Stab. 85, 807–813 (2004)CrossRefGoogle Scholar
  125. 125.
    M. Diagne, M. Guèye, L. Vidal, A. Tidjani, Polym. Degrad. Stab. 89, 418–426 (2005)CrossRefGoogle Scholar
  126. 126.
    J. Zhu, C.A. Wilkie, Polym. Int. 49, 1158–1163 (2000)CrossRefGoogle Scholar
  127. 127.
    M. Berta, C. Lindsay, G. Pans, G. Camino, Polym. Degrad. Stab. 91, 1179–1191 (2006)CrossRefGoogle Scholar
  128. 128.
    C.M.L. Preston, G. Amarasinghe, J.L. Hopewell, R.A. Shanks, Z. Mathys, Polym. Degrad. Stab. 84, 533–544 (2004)CrossRefGoogle Scholar
  129. 129.
    A. Tidjani, Polym. Degrad. Stab. 87, 43–49 (2005)CrossRefGoogle Scholar
  130. 130.
    L. Song, Y. Hu, Y. Tang, R. Zhang, Z. Chen, W. Fan, Polym. Degrad. Stab. 87, 111–116 (2005)CrossRefGoogle Scholar

Copyright information

© Springer Nature Singapore Pte Ltd. 2018

Authors and Affiliations

  • Indraneel Suhas Zope
    • 1
  1. 1.School of Materials Science and EngineeringNanyang Technological UniversitySingaporeSingapore

Personalised recommendations