Literature Review

  • Indraneel Suhas Zope
Chapter
Part of the Springer Theses book series (Springer Theses)

Abstract

This chapter reviews the literature concerning fundamentals of combustion and fire retardancy of polymer/clay nanocomposites. Different commercial fire retardant systems and their limitations have been reviewed. The importance of eco-benign fire retardant has been provided to justify the need of this research work for polymer/clay nanocomposites. Structural details of clay have been discussed followed by a detailed review on the influence of clays on various stages of combustion and corresponding theories associated with polymer/clay nanocomposites is furnished.

References

  1. 1.
    M. Hirschler, Fire performance of organic polymers, thermal decomposition, and chemical composition. in Fire and Polymers: Materials and Solution for Hazard Prevention, vol. 797, ed. G.L. Nelson, C.A. Wilkie (American Chemical Society, Washington, DC, 2001), pp. 293–306Google Scholar
  2. 2.
    D.J. Irvine, J.A. McCluskey, I.M. Robinson, Polym. Degrad. Stab. 67, 383–396 (2000)Google Scholar
  3. 3.
    M.J. Karter, Fire loss in the United States during 2010 (National Fire Protection Association, Fire Analysis and Research Division, Quincy (MA), Quincy (MA), 2011)Google Scholar
  4. 4.
    A.B. Morgan, J.W. Gilman, Fire Mater. 37, 259–279 (2013)Google Scholar
  5. 5.
    M. Ahrens, Home structure fires (National Fire Protection Association, Quincy (MA), 2011)Google Scholar
  6. 6.
  7. 7.
    Flame Retardant Chemicals: Technologies & Global Markets Report code: CHM014 M; April 2015Google Scholar
  8. 8.
    Flame Retardants Integral to Fire Safety: Public Transport. http://www.cefic-efra.com
  9. 9.
    D. Price, G. Anthony, P. Carty, Introduction: polymer combustion, condensed phase pyrolysis and smoke formation, in Fire Retardant Materials, ed. by A.R. Horrocks, D. Price (Woodhead Publishing Ltd., Cambridge, UK, 2001), pp. 1–30Google Scholar
  10. 10.
    M.M. Hirschler, Chemical aspects of thermal decomposition of polymeric materials, in Fire Retardancy Of Polymeric Materials, ed. by A.F. Grand, C.A. Wilkie (Marcel Dekker Inc., New York, 2000), pp. 28–79Google Scholar
  11. 11.
    T. Kashiwagi, Symp. (Int.) Combust. 25, 1423–1437 (1994)Google Scholar
  12. 12.
    A.P. Mouritz, A.G. Gibson, Fire Properties of Polymer Composite Materials (Springer, Dordrecht, 2006)Google Scholar
  13. 13.
    C. F. Cullis, M. M. Hirschler, The Combustion of Organic Polymers. (Clarendon Press, New York; Oxford University Press: Oxford, 1981)Google Scholar
  14. 14.
    Federal Emergency Management Agency; www.usfa.fema.gov
  15. 15.
    A. Witkowski, A.A. Stec, T.R. Hull, Thermal decomposition of polymeric materials. in SFPE Handbook of Fire Protection Engineering, 5th edn., ed. by M. Hurley (Springer, Berlin, 2016), pp. 167–254Google Scholar
  16. 16.
    C.M. Lewin, E.D. Weil, Mechanisms and modes of action in flame retardancy of polymers, in Fire retardant materials, ed. by A.R. Horrocks, D. Price (Woodhead Publishing, Cambridge UK, 2001), pp. 31–68Google Scholar
  17. 17.
    J. Green, J. Fire Sci. 14, 426–442 (1996)Google Scholar
  18. 18.
    G.L. Nelson, Recycling of plastics - a new FR challenge. in The Future of Fire Retarded Materials: Application and Regulations (Williamsburg VA, 1994), pp. 135–143Google Scholar
  19. 19.
    A.B. Morgan Current Trends in Flame Retardants for Thermoplastics. http://www.plasticstrends.net
  20. 20.
    S.Y. Lu, I. Hamerton, Prog. Polym. Sci. 27, 1661–1712 (2002)Google Scholar
  21. 21.
    S.V. Levchik, E.D. Weil, J. Fire Sci. 24, 345–364 (2006)Google Scholar
  22. 22.
    K.S. Betts, Environ. Health Perspect. 116, A210–A213 (2008)Google Scholar
  23. 23.
    P.R. Hornsby, Macromolecular Symposia. 108, 203–219 (1996)Google Scholar
  24. 24.
    R.N. Rothon, P.R. Hornsby, Polym. Degrad. Stab. 54, 383–385 (1996)Google Scholar
  25. 25.
    U. Fink, The market situation, in Plastics Flammability Handbook, ed. by J. Troitzsch (Carl Hanser Verlag, Munich Germany, 2004), pp. 8–32Google Scholar
  26. 26.
    S.V. Levchik, Introduction to flame retardancy and polymer flammability. in Flame Retardant Polymer Nanocomposites, ed. by A.B. Morgan, C.A. Wilkie (Wiley-Interscience, John Wiley & Sons Inc., Hoboken, NJ, 2007), pp. 1–30Google Scholar
  27. 27.
    B. Bann, S.A. Miller, Chem. Rev. 58, 131–172 (1958)Google Scholar
  28. 28.
    L. Costa, G. Camino, M.L.d. Cortemiglia, Mechanism of thermal degradation of fire-retardant melamine salts. in Fire and Polymers: Hazard Identification and Prevention, vol. 425, ed. by G.L. Nelson (American Chemical Society, Washington DC, 1990), pp 211–238Google Scholar
  29. 29.
    S.V. Levchik, G.F. Levchik, A.I. Balabanovich, E.D. Weil, M. Klatt, Angew. Makromolek. Chem. 264, 48–55 (1999)Google Scholar
  30. 30.
    S.V. Levchik, A.I. Balabanovich, G.F. Levchik, L. Costa, Fire Mater. 21, 75–83 (1997)Google Scholar
  31. 31.
    S. Bourbigot, M. Le Bras, S. Duquesne, M. Rochery, Macromol. Mater. Eng. 289, 499–511 (2004)Google Scholar
  32. 32.
    S. Bourbigot, M.L. Bras, F. Dabrowski, J.W. Gilman, T. Kashiwagi, Fire Mater. 24, 201–208 (2000)Google Scholar
  33. 33.
    G. Bertelli, G. Camino, E. Marchetti, L. Costa, E. Casorati, R. Locatelli, Polym. Degrad. Stab. 25, 277–292 (1989)Google Scholar
  34. 34.
    G. Camino, L. Costa, G. Martinasso, Polym. Degrad. Stab. 23, 359–376 (1989)Google Scholar
  35. 35.
    J.W. Gilman, Appl. Clay Sci. 15, 31–49 (1999)Google Scholar
  36. 36.
    D.B.J. Humphrey, Clay; Types, Properties and Uses (Nova Science Publishers Inc, New York, 2011)Google Scholar
  37. 37.
    H. Wanner, Y. Albinsson, O. Karnland, E. Wieland, P. Wersin, L. Charlet, Radiochim. Acta 66(67), 157–162 (1994)Google Scholar
  38. 38.
    S. Bourbigot, J.W. Gilman, C.A. Wilkie, Polym. Degrad. Stab. 84, 483–492 (2004)Google Scholar
  39. 39.
    M. Zanetti, G. Camino, P. Reichert, R. Mülhaupt, Macromol. Rapid Commun. 22, 176–180 (2001)Google Scholar
  40. 40.
    M. Alexandre, P. Dubois, Mater. Sci. Eng. R-Rep. 28, 1–63 (2000)Google Scholar
  41. 41.
    C.L. Beyler, M.M. Hirschler, Thermal Decomposition of Polymers, vol. 1 (Society of Fire Protection Engineers, Boston, MA), pp. 110–131Google Scholar
  42. 42.
    M.C. Costache, D.D. Jiang, C.A. Wilkie, Polymer 46, 6947–6958 (2005)Google Scholar
  43. 43.
    J. Zhu, F.M. Uhl, A.B. Morgan, C.A. Wilkie, Chem. Mater. 13, 4649–4654 (2001)Google Scholar
  44. 44.
    H.W.P. Carvalho, C.V. Santilli, V. Briois, S.H. Pulcinelli, RSC Adv. 3, 22830–22833 (2013)Google Scholar
  45. 45.
    S.M. Lomakin, I.L. Dubnikova, A.N. Shchegolikhin, G.E. Zaikov, R. Kozlowski, G.M. Kim, G.H. Michler, J. Therm. Anal. Calorim. 94, 719–726 (2008)Google Scholar
  46. 46.
    H. Qin, S. Zhang, C. Zhao, M. Yang, J. Polym. Sci., Part B: Polym. Phys. 43, 3713–3719 (2005)Google Scholar
  47. 47.
    M.C. Costache, D. Wang, M.J. Heidecker, E. Manias, C.A. Wilkie, Polym. Adv. Technol. 17, 272–280 (2006)Google Scholar
  48. 48.
    J. Zhu, P. Start, K.A. Mauritz, C.A. Wilkie, Polym. Degrad. Stab. 77, 253–258 (2002)Google Scholar
  49. 49.
    B.N. Jang, C.A. Wilkie, Polymer 46, 3264–3274 (2005)Google Scholar
  50. 50.
    B.N. Jang, C.A. Wilkie, Polymer 46, 2933–2942 (2005)Google Scholar
  51. 51.
    B.N. Jang, M. Costache, C.A. Wilkie, Polymer 46, 10678–10687 (2005)Google Scholar
  52. 52.
    B.N. Jang, C.A. Wilkie, Polymer 46, 9702–9713 (2005)Google Scholar
  53. 53.
    Z.M. Liang, C.Y. Wan, Y. Zhang, P. Wei, J. Yin, J. Appl. Polym. Sci. 92, 567–575 (2004)Google Scholar
  54. 54.
    Y. Wu, H. Huang, W. Zhao, H. Zhang, Y. Wang, L. Zhang, J. Appl. Polym. Sci. 107, 3318–3324 (2008)Google Scholar
  55. 55.
    A.B. Morgan, L.-L. Chu, J.D. Harris, Fire Mater. 29, 213–229 (2005)Google Scholar
  56. 56.
    Y. Tang, Y. Hu, S. Wang, Z. Gui, Z. Chen, W. Fan, Polym. Degrad. Stab. 78, 555–559 (2002)Google Scholar
  57. 57.
    R. Zong, Y. Hu, N. Liu, S. Li, G. Liao, J. Appl. Polym. Sci. 104, 2297–2303 (2007)Google Scholar
  58. 58.
    M. Zanetti, L. Costa, Polymer 45, 4367–4373 (2004)Google Scholar
  59. 59.
    S. Solarski, F. Mahjoubi, M. Ferreira, E. Devaux, P. Bachelet, S. Bourbigot, R. Delobel, P. Coszach, M. Murariu, A. silva Ferreira, M. Alexandre, P. Degee, P. Dubois, J. Mater. Sci. 42, 5105–5117 (2007)Google Scholar
  60. 60.
    H. Qin, S. Zhang, C. Zhao, G. Hu, M. Yang, Polymer 46, 8386–8395 (2005)Google Scholar
  61. 61.
    A. Fina, G. Camino, Polym. Adv. Technol. 22, 1147–1155 (2011)Google Scholar
  62. 62.
    T. Kashiwagi, R.H. Harris Jr., X. Zhang, R.M. Briber, B.H. Cipriano, S.R. Raghavan, W.H. Awad, J.R. Shields, Polymer 45, 881–891 (2004)Google Scholar
  63. 63.
    B.B. Marosfői, G.J. Marosi, A. Szép, P. Anna, S. Keszei, B.J. Nagy, H. Martvonova, I.E. Sajó, Polym. Adv. Technol. 17, 255–262 (2006)Google Scholar
  64. 64.
    W. Xie, Z. Gao, W.-P. Pan, D. Hunter, A. Singh, R. Vaia, Chem. Mater. 13, 2979–2990 (2001)Google Scholar
  65. 65.
    F. Bellucci, G. Camino, A. Frache, A. Sarra, Polym. Degrad. Stab. 92, 425–436 (2007)Google Scholar
  66. 66.
    R. Song, Z. Wang, X. Meng, B. Zhang, T. Tang, J. Appl. Polym. Sci. 106, 3488–3494 (2007)Google Scholar
  67. 67.
    A. Vaccari, Appl. Clay Sci. 14, 161–198 (1999)Google Scholar
  68. 68.
    C. Breen, A. Moronta, J. Phys. Chem. B. 104, 2702–2708 (2000)Google Scholar
  69. 69.
    P. Misaelides, F. Macasek, T. Pinnavaia, C. Colella, Natural Microporous Materials in Environmental Technology, vol. 362 (Springer Science + Business Media, B.V., Dordrecht, 1999)Google Scholar
  70. 70.
    P. Komadel, M. Janek, J. Madejova, A. Weekes, C. Breen, J. Chem. Soc., Faraday Trans. 93, 4207–4210 (1997)Google Scholar
  71. 71.
    C.N. Rhodes, D.R. Brown, J. Chem. Soc., Faraday Trans. 91, 1031–1035 (1995)Google Scholar
  72. 72.
    T. Lan, P.D. Kaviratna, T.J. Pinnavaia, J. Phys. Chem. Solids 57, 1005–1010 (1996)Google Scholar
  73. 73.
    K.A. Carrado, L. Xu, Chem. Mater. 10, 1440–1445 (1998)Google Scholar
  74. 74.
    J.W. Gilman, W.H. Awad, R.D. Davis, J. Shields, R.H. Harris, C. Davis, A.B. Morgan, T.E. Sutto, J. Callahan, P.C. Trulove, H.C. DeLong, Chem. Mater. 14, 3776–3785 (2002)Google Scholar
  75. 75.
    J. Zhu, A.B. Morgan, F.J. Lamelas, C.A. Wilkie, Chem. Mater. 13, 3774–3780 (2001)Google Scholar
  76. 76.
    G. Chigwada, D. Wang, C.A. Wilkie, Polym. Degrad. Stab. 91, 848–855 (2006)Google Scholar
  77. 77.
    N. Hasegawa, H. Okamoto, M. Kato, A. Usuki, N. Sato, Polymer 44, 2933–2937 (2003)Google Scholar
  78. 78.
    Z.-Z. Yu, G.-H. Hu, J. Varlet, A. Dasari, Y.-W. Mai, J. Polym. Sci., Part B: Polym. Phys. 43, 1100–1112 (2005)Google Scholar
  79. 79.
    Y. Shi, T. Kashiwagi, R.N. Walters, J.W. Gilman, R.E. Lyon, D.Y. Sogah, Polymer 50, 3478–3487 (2009)Google Scholar
  80. 80.
    T.H. Milliken, A.G. Oblad, G.A. Mills, Clays Clay Miner. 1, 314–326 (1952)Google Scholar
  81. 81.
    Y. Cai, F. Huang, Q. Wei, L. Song, Y. Hu, Y. Ye, Y. Xu, W. Gao, Polym. Degrad. Stab. 93, 2180–2185 (2008)Google Scholar
  82. 82.
    A. Dasari, Z.-Z. Yu, G.-P. Cai, Y.-W. Mai, Prog. Polym. Sci. 38, 1357–1387 (2013)Google Scholar
  83. 83.
    M.A. Corres, M. Zubitur, M. Cortazar, A. Mugica, Polym. Degrad. Stab. 98, 818–828 (2013)Google Scholar
  84. 84.
    R.D. Davis, J.W. Gilman, D.L. VanderHart, Polym. Degrad. Stab. 79, 111–121 (2003)Google Scholar
  85. 85.
    T.D. Fornes, P.J. Yoon, D.R. Paul, Polymer 44, 7545–7556 (2003)Google Scholar
  86. 86.
    M. Lewin, Fire Mater. 27, 1–7 (2003)Google Scholar
  87. 87.
    J. Hao, M. Lewin, C.A. Wilkie, J. Wang. Polym. Degrad. Stab. 91, 2482–2485 (2006)Google Scholar
  88. 88.
    M. Lewin, Polym. Adv. Technol. 17, 758–763 (2006)Google Scholar
  89. 89.
    M. Lewin, E.M. Pearce, K. Levon, A. Mey-Marom, M. Zammarano, C.A. Wilkie, B.N. Jang, Polym. Adv. Technol. 17, 226–234 (2006)Google Scholar
  90. 90.
    Y. Tang, M. Lewin, Polym. Degrad. Stab. 93, 1986–1995 (2008)Google Scholar
  91. 91.
    T. Kashiwagi, R. Danyus, M. Liu, M. Zammarano, J.R. Shields, Polym. Degrad. Stab. 94, 2028–2035 (2009)Google Scholar
  92. 92.
    A. González, A. Dasari, B. Herrero, E. Plancher, J. Santarén, A. Esteban, S.-H. Lim, Polym. Degrad. Stab. 97, 248–256 (2012)Google Scholar
  93. 93.
    S. Sinha Ray, M. Okamoto. Prog. Polym. Sci. 28, 1539–1641 (2003)Google Scholar
  94. 94.
    K. Shanmuganathan, S. Deodhar, N.A. Dembsey, Q. Fan, P.K. Patra, Polym. Eng. Sci. 48, 662–675 (2008)Google Scholar
  95. 95.
    J.W. Gilman, Flame retardant mechanism of polymer-clay nanocomposites. in Flame Retardant Polymer Nanocomposites, ed. by A.B. Morgan, C.A. Wilkie (Wiley-Interscience, John Wiley & Sons Inc., Hoboken, NJ, 2007), pp. 67–88Google Scholar
  96. 96.
    F. Gao, G. Beyer, Q. Yuan, Polym. Degrad. Stab. 89, 559–564 (2005)Google Scholar
  97. 97.
    G. Beyer, Fire Mater. 29, 61–69 (2005)Google Scholar
  98. 98.
    N. Huang, J. He, J. Du, J. Wang, J. Fire Sci. 30, 256–269 (2012)Google Scholar
  99. 99.
    K.K. Shen, S. Kochesfahani, F. Jouffret, Polym. Adv. Technol. 19, 469–474 (2008)Google Scholar
  100. 100.
    A. Dasari, Z.-Z. Yu, Y.-W. Mai, G. Cai, H. Song, Polymer 50, 1577–1587 (2009)Google Scholar
  101. 101.
    W.J. Kroenke, J. Mater. Sci. 21, 1123–1133 (1986)Google Scholar
  102. 102.
    B. Schartel, M. Bartholmai, U. Knoll, Polym. Degrad. Stab. 88, 540–547 (2005)Google Scholar
  103. 103.
    D.W. van Krevelen, Polymer 16, 615–620 (1975)Google Scholar
  104. 104.
    C. Wilkie, S. Levchik, G. Levchik, Is there a correlation between crosslinking and thermal stability?, in Speciality Polymer Additives: Principles and Application, ed. by S. Al-Malaika, A. Golovoy, C. Wilkie (Blackwell Science, Oxford, UK, 2001), pp. 359–374Google Scholar
  105. 105.
    S.W. Benson, P.S. Nangia, Acc. Chem. Res. 12, 223–228 (1979)Google Scholar
  106. 106.
    P.S. Nangia, S.W. Benson, Int. J. Chem. Kinet. 12, 43–53 (1980)Google Scholar
  107. 107.
    P.S. Nangia, S.W. Benson, Int. J. Chem. Kinet. 12, 29–42 (1980)Google Scholar
  108. 108.
    S.W. Benson, Prog. Energy Combust. Sci. 7, 125–134 (1981)Google Scholar
  109. 109.
    M. Zanetti, P. Bracco, L. Costa, Polym. Degrad. Stab. 85, 657–665 (2004)Google Scholar
  110. 110.
    M. Zanetti, G. Camino, R. Thomann, R. Mülhaupt, Polymer 42, 4501–4507 (2001)Google Scholar
  111. 111.
    J. Zhu, M.A. McKinney, C.A. Wilkie, Polym. Degrad. Stab. 66, 213–220 (1999)Google Scholar
  112. 112.
    Z. Wang, D.D. Jiang, C.A. Wilkie, J.W. Gilman, Polym. Degrad. Stab. 66, 373–378 (1999)Google Scholar
  113. 113.
    Y. Ning, S. Guo, J. Appl. Polym. Sci. 77, 3119–3127 (2000)Google Scholar
  114. 114.
    K. Chen, C.A. Wilkie, S. Vyazovkin, J. Phys. Chem. B. 111, 12685–12692 (2007)Google Scholar
  115. 115.
    H. Ma, L. Tong, Z. Xu, Z. Fang, Appl. Clay Sci. 42, 238–245 (2008)Google Scholar
  116. 116.
    G. Cai, A. Dasari, Z.-Z. Yu, X. Du, S. Dai, Y.-W. Mai, J. Wang. Polym. Degrad. Stab. 95, 845–851 (2010)Google Scholar
  117. 117.
    T.R. Hull, D. Price, Y. Liu, C.L. Wills, J. Brady. Polym. Degrad. Stab. 82, 365–371 (2003)Google Scholar
  118. 118.
    Y. Cai, N. Wu, Q. Wei, K. Zhang, Q. Xu, W. Gao, L. Song, Y. Hu, Surf. Coat. Technol. 203, 264–270 (2008)Google Scholar
  119. 119.
    K. Prakalathan, S. Mohanty, S.K. Nayak, J. Reinf. Plast. Compos. 31, 1300–1310 (2012)Google Scholar
  120. 120.
    P. Nawani, P. Desai, M. Lundwall, M.Y. Gelfer, B.S. Hsiao, M. Rafailovich, A. Frenkel, A.H. Tsou, J.W. Gilman, S. Khalid, Polymer 48, 827–840 (2007)Google Scholar
  121. 121.
    S. Levchik, C. Wilkie, Char formation, in Fire Retardancy of Polymeric Materials, ed. by A.F. Grand, C. Wilkie (Marcel Dekker, New York, 2000), pp. 171–215Google Scholar
  122. 122.
    T.R. Hull, A.A. Stec, K. Lebek, D. Price, Polym. Degrad. Stab. 92, 2239–2246 (2007)Google Scholar
  123. 123.
    A.A. Stec, J. Rhodes. Polym. Degrad. Stab. 96, 295–300 (2011)Google Scholar
  124. 124.
    H. Qin, S. Zhang, C. Zhao, M. Feng, M. Yang, Z. Shu, S. Yang, Polym. Degrad. Stab. 85, 807–813 (2004)Google Scholar
  125. 125.
    M. Diagne, M. Guèye, L. Vidal, A. Tidjani, Polym. Degrad. Stab. 89, 418–426 (2005)Google Scholar
  126. 126.
    J. Zhu, C.A. Wilkie, Polym. Int. 49, 1158–1163 (2000)Google Scholar
  127. 127.
    M. Berta, C. Lindsay, G. Pans, G. Camino, Polym. Degrad. Stab. 91, 1179–1191 (2006)Google Scholar
  128. 128.
    C.M.L. Preston, G. Amarasinghe, J.L. Hopewell, R.A. Shanks, Z. Mathys, Polym. Degrad. Stab. 84, 533–544 (2004)Google Scholar
  129. 129.
    A. Tidjani, Polym. Degrad. Stab. 87, 43–49 (2005)Google Scholar
  130. 130.
    L. Song, Y. Hu, Y. Tang, R. Zhang, Z. Chen, W. Fan, Polym. Degrad. Stab. 87, 111–116 (2005)Google Scholar

Copyright information

© Springer Nature Singapore Pte Ltd. 2018

Authors and Affiliations

  • Indraneel Suhas Zope
    • 1
  1. 1.School of Materials Science and EngineeringNanyang Technological UniversitySingaporeSingapore

Personalised recommendations