Introduction

  • Indraneel Suhas Zope
Chapter
Part of the Springer Theses book series (Springer Theses)

Abstract

This chapter provides an overview of fire retardancy behavior of polymer/clay nanocomposites. Time-to-ignition, a major limiting factor of these materials is discussed in detail, followed by research motivation and objective.

References

  1. 1.
    H.S. Hendriks, R.H.S. Westerink, Neurotoxicol. Teratol. 52, Part B, 248–269 (2015)Google Scholar
  2. 2.
    P.A. Eubig, R.H.S. Westerink, Neurotoxicol. Teratol. 52, Part B, 118 (2015)Google Scholar
  3. 3.
    I. van der Veen, J. de Boer, Chemosphere 88, 1119–1153 (2012)CrossRefGoogle Scholar
  4. 4.
    V. Babrauskas, D. Lucas, D. Eisenberg, V. Singla, M. Dedeo, A. Blum, Build. Res. Inf. 40, 738–755 (2012)CrossRefGoogle Scholar
  5. 5.
    S.D. Shaw, A. Blum, R. Weber, K. Kannan, D. Rich, D. Lucas, C.P. Koshland, D. Dobraca, S. Hanson, L.S. Birnbaum, Organohalogen Compd. 73, 2036–2039 (2011)Google Scholar
  6. 6.
    S. Levchik, in Phosphorus-Based FRs, Non-Halogenated Flame Retardant Handbook (Wiley, 2014), pp. 17–74CrossRefGoogle Scholar
  7. 7.
    K.S. Betts, Environ. Health Perspect. 116, A210–A213 (2008)CrossRefGoogle Scholar
  8. 8.
    A. Dasari, Z.-Z. Yu, G.-P. Cai, Y.-W. Mai, Prog. Polym. Sci. 38, 1357–1387 (2013)CrossRefGoogle Scholar
  9. 9.
    R. Sauerwein, in Mineral Filler Flame Retardants, Non-Halogenated Flame Retardant Handbook (Wiley, 2014), pp. 75–141CrossRefGoogle Scholar
  10. 10.
    M. Kotal, A.K. Bhowmick, Prog. Polym. Sci. 51, 127–187 (2015)CrossRefGoogle Scholar
  11. 11.
    J.W. Gilman, T. Kashiwagi, J. Lichtenhan, SAMPE J. 33, 40–46 (1997)Google Scholar
  12. 12.
    P. Kiliaris, C.D. Papaspyrides, Prog. Polym. Sci. 35, 902–958 (2010)CrossRefGoogle Scholar
  13. 13.
    2014 Nanotechnology Research Review, NAN047F; BCC Research, Wellesley, MA, USA, Dec 2014Google Scholar
  14. 14.
    C. Sanchez, P. Belleville, M. Popall, L. Nicole, Chem. Soc. Rev. 40, 696–753 (2011)CrossRefGoogle Scholar
  15. 15.
    M. Bartholmai, B. Schartel, Polym. Adv. Technol. 15, 355–364 (2004)CrossRefGoogle Scholar
  16. 16.
    A.B. Morgan, L.-L. Chu, J.D. Harris, Fire Mater. 29, 213–229 (2005)CrossRefGoogle Scholar
  17. 17.
    B. Schartel, A. Weiß, Fire Mater. 34, 217–235 (2010)CrossRefGoogle Scholar
  18. 18.
    H. Qin, S. Zhang, C. Zhao, M. Feng, M. Yang, Z. Shu, S. Yang, Polym. Degrad. Stab. 85, 807–813 (2004)CrossRefGoogle Scholar
  19. 19.
    R.D. Davis, J.W. Gilman, D.L. VanderHart, Polym. Degrad. Stab. 79, 111–121 (2003)CrossRefGoogle Scholar
  20. 20.
    Y. Cai, F. Huang, Q. Wei, L. Song, Y. Hu, Y. Ye, Y. Xu, W. Gao, Polym. Degrad. Stab. 93, 2180–2185 (2008)CrossRefGoogle Scholar
  21. 21.
    A. Fina, G. Camino, Polym. Adv. Technol. 22, 1147–1155 (2011)CrossRefGoogle Scholar
  22. 22.
    H.W.P. Carvalho, C.V. Santilli, V. Briois, S.H. Pulcinelli, RSC Adv. 3, 22830–22833 (2013)CrossRefGoogle Scholar
  23. 23.
    R. Tettenhorst, Am. Miner. 47, 769–773 (1962)Google Scholar
  24. 24.
    M. Chorom, P. Rengasamy, Clays Clay Miner. 44, 783–790 (1996)CrossRefGoogle Scholar
  25. 25.
    R. Calvet, R. Prost, Clays Clay Miner. 19, 175–186 (1971)CrossRefGoogle Scholar
  26. 26.
    J.H. Purnell, L. Yun, Catal. Lett. 18, 235–241 (1993)CrossRefGoogle Scholar
  27. 27.
    L. Heller-Kallai, C. Mosser, Clays Clay Miner. 43, 738–743 (1995)CrossRefGoogle Scholar
  28. 28.
    A. Bakandritsos, A. Simopoulos, D. Petridis, Nanotechnology 17, 1112 (2006)CrossRefGoogle Scholar
  29. 29.
    G. Kulbicki, Clays Clay Miner. 5, 144–158 (1956)CrossRefGoogle Scholar
  30. 30.
    P. Misaelides, F. Macasek, T. Pinnavaia, C. Colella, Natural Microporous Materials in Environmental Technology, vol 362 (Springer Science+Business Media, B.V., Dordrecht, 1999)Google Scholar
  31. 31.
    F. Bergaya, G. Lagaly, Handbook of Clay Science Part A: Fundamentals. 2nd ed.; Elsevier: Oxford, 2013; Vol. 5AGoogle Scholar
  32. 32.
    R.A. Schoonheydt, C.T. Johnston, in Surface and Interface Chemistry of Clay Minerals, eds. by F. Bergaya; G. Lagaly. Developments in Clay Science (Elsevier, 2013), Chapter 5, pp. 139–172Google Scholar
  33. 33.
    M. Janek, P. Komadel, G. Lagaly, Clay Miner. 32, 623–632 (1997)CrossRefGoogle Scholar
  34. 34.
    J.T. Kloprogge, S. Komarneni, K. Yanagisawa, R. Fry, R.L. Frost, J. Colloid Interface Sci. 212, 562–569 (1999)CrossRefGoogle Scholar
  35. 35.
    J.T. Kloprogge, R.L. Frost, L. Hickey, Thermochim. Acta 345, 145–156 (2000)CrossRefGoogle Scholar
  36. 36.
    J. Humphrey, D. Boyd, Clay; Types, Properties and Uses (Nova Science Publishers Inc, New York, 2011)Google Scholar
  37. 37.
    C. Deng, J. Zhao, C.-L. Deng, Q. Lv, L. Chen, Y.-Z. Wang, Polym. Degrad. Stab. 103, 1–10 (2014)CrossRefGoogle Scholar
  38. 38.
    P. Natkański, P. Kuśtrowski, A. Białas, J. Surman, J. Therm. Anal. Calorim. 113, 335–342 (2013)CrossRefGoogle Scholar
  39. 39.
    R. Yong, R. Pusch, M. Nakano, Containment of High-Level Radioactive and Hazardous Solid Wastes with Clay Barriers (Spon Press, NY, 2010)Google Scholar

Copyright information

© Springer Nature Singapore Pte Ltd. 2018

Authors and Affiliations

  • Indraneel Suhas Zope
    • 1
  1. 1.School of Materials Science and EngineeringNanyang Technological UniversitySingaporeSingapore

Personalised recommendations