A Comparative Analysis of Local Pattern Descriptors for Face Recognition

  • R. Srinivasa Perumal
  • P. V. S. S. R. Chandra Mouli


Face recognition has lot of challenges in biometrics. The challenges are addressed effectively by local pattern descriptors. The idea of local descriptors is to determine the feature vector and then compute the difference between test images with training images by using similarity measure. Based on the observation, local approaches attained better performance rate than other approaches in face recognition. Due to that, researchers made a significant attention on local descriptors for face recognition. For nonlinear subspace, the local descriptors will achieve better result than holistic approach. Local pattern descriptor follows simple procedure to extract the facial features. The steps are face alignment, face representation, and matching. Face alignment is the first step of local descriptor, which is used to divide the image into several blocks. Face representation is used to extract the meaningful information from each region. This local feature extraction method carries discriminant information of the region; it will improve the classification rate and matching rate. Local descriptors extract the discriminant information from the neighbors by setting a threshold value as center pixel value, and it is not capable of extracting the detailed information from microstructure. Finally, matching by classification techniques or distance measure is used to identify or verify the person. The local pattern descriptors are more robust against pose, lighting, and scale variations. This chapter describes the various local pattern descriptors and shows the effectiveness of the descriptor. The results of local pattern descriptors are experimented on standard benchmark databases such as FERET, Extended Yale-B, ORL, CAS-PEAL, LFW, JAFFE, and Cohn–Kannade.


Face recognition Local pattern descriptor Feature extraction Brain computer interfaces Image processing Biometrics 


  1. 1.
    Jain, A. K., Flynn, P., & Ross, A. A. (2007). Handbook of biometrics. Berlin: Springer.Google Scholar
  2. 2.
    Jafri, R., & Arabnia, H. R. (2009). A survey of face recognition techniques. Journal of Information Processing Systems, 5(2), 41–68.Google Scholar
  3. 3.
    Galton, F. (1889). Personal identification and description. Journal of Anthropological Institute of Great Britain and Ireland, 177–191.Google Scholar
  4. 4.
    Jain, A. K., & Li, S. Z. (2005). Handbook of face recognition, vol. 1. Berlin: Springer.Google Scholar
  5. 5.
    Hatem, H., Beiji, Z., & Majeed, R. (2015). A survey of feature base methods for human face detection. International Journal of Control and Automation, 8(5), 61–78.CrossRefGoogle Scholar
  6. 6.
    Zhao, W., Chellappa, R., Phillips, P. J., & Rosenfeld, A. (2003). Face recognition: A literature survey. ACM computing surveys (CSUR), 35(4), 399–458.CrossRefGoogle Scholar
  7. 7.
    Biederman, I., & Kalocsai, P. (1998). Neural and psychophysical analysis of object and face recognition. NATO ASI Series F Computer and Systems Sciences, 163, 3–25.Google Scholar
  8. 8.
    Ellis, H. (1986). Introduction to aspects of face processing: Ten questions in need of answers. In Aspects of face processing, pp. 3–13. Berlin: Springer.Google Scholar
  9. 9.
    Bruce, V., Hancock, P. J., & Burton, A. M. (1998). Human face perception and identification. In: Face recognition, pp. 51–72. Springer.Google Scholar
  10. 10.
    Sagiv, N., & Bentin, S. (2001). Structural encoding of human and schematic faces: Holistic and part based processes. Journal of Cognitive Neuroscience, 13(7), 937–951.CrossRefGoogle Scholar
  11. 11.
    Brunelli, R., & Poggio, T. (1993). Face recognition: Features versus templates. IEEE Transactions on Pattern Analysis & Machine Intelligence, 1042–1052.Google Scholar
  12. 12.
    Baron, R. J. (1981). Mechanisms of human facial recognition. International Journal Man-Machine Studies, 15(2), 137–178.CrossRefGoogle Scholar
  13. 13.
    Huang, R. J. J. (1998). Detection strategies for face recognition using learning and evolution. Ph.D. thesis, George Mason University (1998).Google Scholar
  14. 14.
    Sirovich, L., & Kirby, M. (1987). Low-dimensional procedure for the characterization of human faces. JOSA A, 4(3), 519–524.CrossRefGoogle Scholar
  15. 15.
    Turk, M., & Pentland, A. (1991). Eigenfaces for recognition. Journal of Cognitive Neuroscience, 3(1), 71–86.CrossRefGoogle Scholar
  16. 16.
    Belhumeur, P. N., Hespanha, J. P., & Kriegman, D. J. (1996). Eigenfaces vs. fisherfaces: Recognition using class specific linear projection. In Computer Vision (ECCV’96), pp. 43–58. Berlin: Springer.Google Scholar
  17. 17.
    Bartlett, M. S., Movellan, J. R., & Sejnowski, T. J. (2002). Face recognition by independent component analysis. IEEE Transactions on Neural Networks, 13(6), 1450–1464.CrossRefGoogle Scholar
  18. 18.
    Yang, J., Zhang, D., Frangi, A. F., & Yang, J. (2004). Two-dimensional PCA: A new approach to appearance based face representation and recognition. IEEE Transactions on Pattern Analysis and Machine Intelligence, 26(1), 131–137.Google Scholar
  19. 19.
    Tan, K., & Chen, S. (2005). Adaptively weighted sub-pattern PCA for face recognition. Neuro computing, 64, 505–511.Google Scholar
  20. 20.
    Nhat, V. D. M., & Lee, S. (2005) An improvement on LDA algorithm for face recognition. In: Advances in neural networks–ISNN 2005, pp. 1016–1021. Berlin: Springer.Google Scholar
  21. 21.
    Sun, N., Wang, H., Ji, Z., Zou, C., & Zhao, L. (2008). An efficient algorithm for kernel two dimensional principal component analysis. Neural Computing and Applications, 17(1), 59–64.Google Scholar
  22. 22.
    Zhou, D., & Yang, X. (2004). Face recognition using direct-weighted LDA. In: PRICAI 2004: Trends in Artificial Intelligence, pp. 760–768. Berlin: Springer.Google Scholar
  23. 23.
    Howland, P., & Park, H. (2004). Generalizing discriminant analysis using the generalized singular value decomposition. IEEE Transactions on Pattern Analysis and Machine Intelligence, 26(8), 995–1006.CrossRefGoogle Scholar
  24. 24.
    Zhang, W., Shan, S., Gao, W., Chang, Y., & Cao, B. (2005). Component-based cascade linear discriminant analysis for face recognition. In Advances in biometric person authentication, pp. 288–295. Berlin: Springer.Google Scholar
  25. 25.
    Liu, Q., Lu, H., & Ma, S. (2004). Improving kernel fisher discriminant analysis for face recognition. IEEE Transactions on Circuits and Systems for Video Technology, 14(1), 42–49.CrossRefGoogle Scholar
  26. 26.
    Pang, Y., Zhang, L., Li, M., Liu, Z., & Ma, W. (2005). A novel Gabor-LDA based face recognition method. In Advances in multimedia information processing-PCM 2004, pp. 352–358. Berlin: Springer.Google Scholar
  27. 27.
    Jing, X. Y., Tang, Y. Y., & Zhang, D. (2005). A fourier–LDA approach for image recognition. Pattern Recognition, 38(3), 453–457.CrossRefzbMATHGoogle Scholar
  28. 28.
    DeMers, D., Cottrell, G., & et al. (1993). Non-linear dimensionality reduction. In Advances in neural information processing systems, pp. 580–580.Google Scholar
  29. 29.
    Weng, J. J., Ahuja, N., & Huang, T. S. (1993). Learning recognition and segmentation of 3-D objects from 2-D images. In Fourth International Conference on Computer Vision, 1993. Proceedings, pp. 121–128. IEEE.Google Scholar
  30. 30.
    Lawrence, S., Giles, C. L., Tsoi, A. C., & Back, A. D. (1997). Face recognition: A convolutional neural network approach. IEEE Transactions on Neural Networks, 8(1), 98–113.CrossRefGoogle Scholar
  31. 31.
    Kohonen, T. (1998). The self-organizing map. Neurocomputing, 21(1), 1–6.CrossRefzbMATHGoogle Scholar
  32. 32.
    Eleyan, A., & Demirel, H. (2005). Face recognition system based on PCA and feedforward neural networks. In: Computational intelligence and bioinspired systems, pp. 935–942. Berlin: Springer.Google Scholar
  33. 33.
    Li, Z., & Tang, S. (2002). Face recognition using improved pairwise coupling support vector machines. In Proceedings of the 9th International Conference on Neural Information Processing, ICONIP’02, vol. 2, pp. 876–880. IEEE.Google Scholar
  34. 34.
    Samaria, F. S. (1994). Face recognition using hidden Markov models. Ph.D. thesis, University of Cambridge.Google Scholar
  35. 35.
    Li, B., & Yin, H. (2005). Face recognition using rbf neural networks and wavelet transform. In Advances in neural networks, ISNN 2005, pp. 105–111. Berlin: Springer.Google Scholar
  36. 36.
    Beumier, C., & Acheroy, M. (2000). Automatic 3D face authentication. Image and Vision Computing, 18(4), 315–321.CrossRefzbMATHGoogle Scholar
  37. 37.
    Yang, Q., & Tang, X. (2005). Recent advances in subspace analysis for face recognition. In Advances in biometric person authentication, pp. 275–287. Berlin: Springer.Google Scholar
  38. 38.
    Kanade, T. (1973). Picture processing system by computer complex and recognition of human faces. Ph.D. thesis, Kyoto University.Google Scholar
  39. 39.
    Wiskott, L., & Von Der Malsburg, C. (1996). Recognizing faces by dynamic link matching. Neuro Image, 4(3), S14–S18.Google Scholar
  40. 40.
    Heisele, B., Serre, T., & Poggio, T. (2007). A component-based framework for face detection and identification. International Journal of Computer Vision, 74(2), 167–181.CrossRefGoogle Scholar
  41. 41.
    Bonnen, K., Klare, B. F., & Jain, A. K. (2013). Component-based representation in automated face recognition. IEEE Transactions on Information Forensics and Security, 8(1), 239–253.CrossRefGoogle Scholar
  42. 42.
    Ojala, T., Pietikainen, M., & Harwood, D. (1996). A comparative study of texture measures with classification based on featured distributions. Pattern Recognition, 29(1), 51–59.CrossRefGoogle Scholar
  43. 43.
    Ojala, T., Pietikainen, M., & Maenpaa, T. (2002). Multiresolution gray-scale and rotation invariant texture classification with local binary patterns. IEEE Transactions on Pattern Analysis and Machine Intelligence, 24(7), 971–987.Google Scholar
  44. 44.
    Ahonen, T., Hadid, A., & Pietikainen, M. (2006). Face description with local binary patterns: Application to face recognition. IEEE Transactions on Pattern Analysis and Machine Intelligence, 28(12), 2037–2041.CrossRefzbMATHGoogle Scholar
  45. 45.
    Huang, D., Shan, C., Ardabilian, M., Wang, Y., & Chen, L. (2011). Local binary patterns and its application to facial image analysis: A survey. IEEE Transactions on Systems, Man, and Cybernetics, Part C: Applications and Reviews, 41(6), 765–781.CrossRefGoogle Scholar
  46. 46.
    Jin, H., Liu, Q., Lu, H., & Tong, X. (2004) Face detection using improved LBP under bayesian framework. In 2004 IEEE First Symposium on Multi-agent security and survivability, pp. 306–309.Google Scholar
  47. 47.
    Guo, Z., Zhang, L., & Zhang, D. (2010). A completed modeling of local binary pattern operator for texture classification. IEEE Transactions on Image Processing, 19(6), 1657–1663.MathSciNetCrossRefzbMATHGoogle Scholar
  48. 48.
    Yang, H., & Wang, Y. (2007). A LBP-based face recognition method with hamming distance constraint. In Fourth International Conference on Image and Graphics, ICIG 2007, pp. 645–649. IEEE.Google Scholar
  49. 49.
    Huang, D., Wang, Y., & Wang, Y. (2007). A robust method for near infrared face recognition based on extended local binary pattern. In Advances in visual computing, pp. 437–446. Berlin: Springer.Google Scholar
  50. 50.
    Huang, Y., Wang, Y., & Tan, T. (2006). Combining statistics of geometrical and correlative features for 3D face recognition. In BMVC, pp. 879–888. Citeseer.Google Scholar
  51. 51.
    Tan, X., & Triggs, B. (2010). Enhanced local texture feature sets for face recognition under difficult lighting conditions. IEEE Transactions on Image Processing, 19(6), 1635–1650.MathSciNetCrossRefzbMATHGoogle Scholar
  52. 52.
    Liao, S., Zhu, X., Lei, Z., Zhang, L., & Li, S. Z. (2007). Learning multi-scale block local binary patterns for face recognition. In Advances in biometrics, pp. 828–837. Berlin: Springer.Google Scholar
  53. 53.
    Zhang, W., Shan, S., Gao, W., Chen, X., & Zhang, H. (2005). Local Gabor binary pattern histogram sequence (LGBPHS): A novel non-statistical model for face representation and recognition. In Tenth IEEE International Conference on Computer Vision, pp. 786–791. IEEE.Google Scholar
  54. 54.
    Heikkila, M., Pietikäinen, M., & Schmid, C. (2009). Description of interest regions with local binary patterns. Pattern Recognition, 42(3), 425–436.Google Scholar
  55. 55.
    Zhang, B., Gao, Y., Zhao, S., & Liu, J. (2010). Local derivative pattern versus local binary pattern: Face recognition with high-order local pattern descriptor. IEEE Transactions on Image Processing, 19(2), 533–544.MathSciNetCrossRefzbMATHGoogle Scholar
  56. 56.
    Jabid, T., Kabir, M. H., & Chae, O. (2010). Local directional pattern (LDP) for face recognition. In 2010 Digest of technical papers international conference on consumer electronics (ICCE).Google Scholar
  57. 57.
    Kabir, M. H., Jabid, T., & Chae, O. (2012). Local directional pattern variance (LDPv): A robust feature descriptor for facial expression recognition. The International Arab Journal of Information Technology, 9(4), 382–391.Google Scholar
  58. 58.
    Zhong, F., & Zhang, J. (2013). Face recognition with enhanced local directional patterns. Neuro computing, 119, 375–384.Google Scholar
  59. 59.
    Castillo, J. A. R., Rivera, A. R., & Chae, O. (2012). Facial expression recognition based on local sign directional pattern. In 19th IEEE International Conference on Image Processing (ICIP), pp 2613–2616.Google Scholar
  60. 60.
    Ramirez Rivera, A., Rojas, J., & Chae, O. (2012). Local Gaussian directional pattern for face recognition. In: 21st International Conference on Pattern Recognition (ICPR), pp. 1000–1003. IEEE.Google Scholar
  61. 61.
    Ramirez Rivera, A., Rojas Castillo, J., & Chae, O. (2013). Local directional number pattern for face analysis: Face and expression recognition. IEEE Transactions on Image Processing, 22(5), 1740–1752.MathSciNetCrossRefzbMATHGoogle Scholar
  62. 62.
    Faraji, M. R., & Qi, X. (2015). Face recognition under illumination variations based on eight local directional patterns. IET Biometrics, 4(1), 10–17.CrossRefGoogle Scholar
  63. 63.
    Faraji, M. R., & Qi, X. (2014). Face recognition under varying illumination based on adaptive homomorphic eight local directional patterns. IET Computer Vision, 9(3), 390–399.CrossRefGoogle Scholar
  64. 64.
    Faraji, M. R., & Qi, X. (2016). Face recognition under varying illuminations using logarithmic fractal dimension-based complete eight local directional patterns. Neurocomputing, 199, 16–30.CrossRefGoogle Scholar
  65. 65.
    Srinivasa Perumal, R., & Chandra Mouli, P. (2016). Dimensionality reduced local directional pattern (DR-LDP) for face recognition. Expert Systems with Applications, 63, 66–73.CrossRefGoogle Scholar
  66. 66.
    Srinivasa Perumal, R., & Chandra Mouli, P. (2016). Two-level dimensionality reduced local directional pattern for face recognition. International Journal of Biometrics, 8(1), 52–64.CrossRefGoogle Scholar
  67. 67.
    Ishraque, S. Z., Banna, A. H., & Chae, O. (2012). Local Gabor directional pattern for facial expression recognition. In 15th International Conference on Computer and Information Technology (ICCIT), pp. 164–167. IEEE.Google Scholar
  68. 68.
    Liu, J., Jing, X., Sun, S., & Lian, Z. (2015). Local Gabor dominant direction pattern for face recognition. Chinese Journal of Electronics, 245–250.Google Scholar
  69. 69.
    Ahmed, F. (2012). Gradient directional pattern: A robust feature descriptor for facial expression recognition. Electronics Letters, 48(19), 1203–1204.CrossRefGoogle Scholar
  70. 70.
    Chakraborty, S., Singh, S. K., & Chakraborty, P. (2015). Local directional gradient pattern: A local descriptor for face recognition. Multimedia Tools and Applications, 1–16.Google Scholar
  71. 71.
    Phillips, P. J., Moon, H., Rizvi, S., & Rauss, P. J. (2000). The feret evaluation methodology for face recognition algorithms. IEEE Transactions on Pattern Analysis and Machine Intelligence, 22(10), 1090–1104.CrossRefGoogle Scholar
  72. 72.
    Lee, K. C., Ho, J., & Kriegman, D. J. (2005). Acquiring linear subspaces for face recognition under variable lighting. IEEE Transactions on Pattern Analysis and Machine Intelligence, 27(5), 684–698.CrossRefGoogle Scholar
  73. 73.
    Huang, G. B., Ramesh, M., Berg, T., & Learned-Miller, E. (2007). Labeled faces in the wild: A database for studying face recognition in unconstrained environments. Technical Report 07-49, University of Massachusetts, Amherst.Google Scholar
  74. 74.
    AT&T Laboratories (2002). Database of faces.
  75. 75.
    Lyons, M., Akamatsu, S., Kamachi, M., & Gyoba, J. (1998). Coding facial expressions with Gabor wavelets. In Third IEEE International Conference on Automatic Face and Gesture Recognition, 1998. Proceedings, pp. 200–205. IEEE.Google Scholar
  76. 76.
    Kanade, T., Cohn, J.F., & Tian, Y. (2000). Comprehensive database for facial expression analysis. In: Proceedings of Fourth IEEE International Conference on Automatic Face and Gesture Recognition, pp. 46–53. IEEE.Google Scholar
  77. 77.
    Gao, W., Cao, B., Shan, S., Chen, X., Zhou, D., Zhang, X., et al. (2008). The CAS-PEAL largescale Chinese face database and baseline evaluations. IEEE Transactions on Systems, Man and Cybernetics, Part A: Systems and Humans, 38(1), 149–161.CrossRefGoogle Scholar
  78. 78.
    Martinez, A. M. (1998). The AR face database. CVC Technical Report 24.Google Scholar
  79. 79.
    Sim, T., Baker, S., & Bsat, M. (2002). The CMU pose, illumination, and expression (PIE) database. In Fifth IEEE International Conference on Automatic Face and Gesture Recognition, 2002. Proceedings, pp. 46–51. IEEE.Google Scholar
  80. 80.
    Bartlett, M. S., Littlewort, G., Frank, M., Lainscsek, C., Fasel, I., & Movellan, J. (2005). Recognizing facial expression: machine learning and application to spontaneous behavior. In IEEE Computer Society Conference on Computer Vision and Pattern Recognition (CVPR’05), IEEE, Issue 2, pp. 568–573.Google Scholar
  81. 81.
    Shan, C., Gong, S., & McOwan, P. W. (2009). Facial expression recognition based on local binary patterns: A comprehensive study. Image and Vision Computing, 27(6), 803–816.CrossRefGoogle Scholar
  82. 82.
    Jabid, T., Kabir, M. H., & Chae, O. (2010). Robust facial expression recognition based on local directional pattern. ETRI Journal, 32(5), 784–794.CrossRefGoogle Scholar

Copyright information

© Springer Nature Singapore Pte Ltd. 2018

Authors and Affiliations

  • R. Srinivasa Perumal
    • 1
  • P. V. S. S. R. Chandra Mouli
    • 2
  1. 1.School of Information Technology and EngineeringVIT UniversityVelloreIndia
  2. 2.School of Computer Science and EngineeringVIT UniversityVelloreIndia

Personalised recommendations