Skip to main content

Assessment of the Fetal Health Using NI-aECG

  • Conference paper
  • First Online:
Advanced Computational and Communication Paradigms

Part of the book series: Lecture Notes in Electrical Engineering ((LNEE,volume 475))

  • 1037 Accesses

Abstract

Accurate extraction of the fetal QRS (FQRS) complex extracted from the maternal abdominal ECG (aECG) has become a very important clinical procedure to evaluate the well-being of the fetus. Fetal heart rate (FHR) obtained from the FQRS indicates fetal hypoxia, fetal distress, and other fetal-related problems that can be easily detected. In this paper, the aECG is preprocessed to remove the low-frequency baseline wandering and power line interference (PLI). In the following step, we proposed a technique to extract maternal QRS (MQRS) and FQRS from the Physionet abdominal ECG (aECG) database. The computed maternal and fetal QRS templates were optimized and fine-tuned for each of the Physionet noninvasive aECG databases. Our proposed synthesized QRS pulse template method was also compared with the Independent Component Analysis (ICA) method for performance. The proposed system correctly evaluated and estimated the FECG signal for most records for the Physionet abdominal and direct fetal ECG database (adfecgdb) with the fetal QRS annotations. Using cross-correlation techniques, the MQRS and FQRS were estimated while the FHR was also correctly computed for most records.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 189.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 249.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 249.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Sameni R, Clifford GD (2010) A review of fetal ECG signal processing; issues and promising directions. Open Pacing, Electrophysiol Therapy J 3

    Google Scholar 

  2. Winkler CL et al (1991) Neonatal complications at term as related to the degree of umbilical artery acidemia. Am J Obstet Gynecol 164(2):637–641

    Article  Google Scholar 

  3. Hasan MA, Ibrahimy MI, Reaz MBI (2007) Techniques of FECG signal analysis: detection and processing for fetal monitoring. WIT Trans Biomed Health 12:295–305

    Article  Google Scholar 

  4. Corton MM et al (2014) Williams obstetrics 24/E. McGraw Hill Professional

    Google Scholar 

  5. Cohen WR et al (2012) Accuracy and reliability of fetal heart rate monitoring using maternal abdominal surface electrodes. Acta Obstet Gynecol Scand 91(11):1306–1313

    Article  Google Scholar 

  6. Clifford GD et al (2014) Non-invasive fetal ECG analysis. Physiol Meas 35(8):1521

    Article  Google Scholar 

  7. Behar J et al (2016) A practical guide to non-invasive foetal electrocardiogram extraction and analysis. Physiol Meas 37(5):R1

    Article  MathSciNet  Google Scholar 

  8. Vullings R, De Vries B, Bergmans JWM (2011) An adaptive kalman filter for ECG signal enhancement. IEEE Trans Biomed Eng 58(4):1094–1103

    Article  Google Scholar 

  9. Widrow B, McCool JM, Larimore MG, Johnson CR (1976) Stationary and non-stationary learning characteristics of the LMS adaptive filter. IEEE Proc. 64:1151–1162

    Article  MathSciNet  Google Scholar 

  10. Marques de Sa JP, Reis LP, Lau JN et al (1994) Estimation and classification of fetal heart rate baselines using artificial neural networks. Comput Cardiol 541–544

    Google Scholar 

  11. Kezi Selva Vijila C, Kanagasabapathy P, Johnson S (2005) Adaptive neuro fuzzy inference system for elicitation of fECG. In: Annual IEEE India conference-INDICON, pp 224–227

    Google Scholar 

  12. Ye Y, Zhang ZL, Zeng J, Peng L (2008) A fast and adaptive ICA algorithm with its application to fetal electrocardiogram elicitation. Appl Math Comput 205(2):799–806

    MathSciNet  MATH  Google Scholar 

  13. Romero I (2010) PCA-based noise reduction in ambulatory ECGs. Comput Cardiol 37:677–680

    Google Scholar 

  14. De Lathauwer L, De Moor B, Vandewalle J (2000) SVD-based methodologies for fetal electrocardiogram elicitation. In: Proceedings of IEEE on Acoustics Speech and Signal Processing, vol 6, pp 3771–3774

    Google Scholar 

  15. Van Bemmel JH (1968) Detection of weak foetal electro-cardiograms by autocorrelation and cross correlation of envelopes, IEEE Trans Biomed Eng, BME-15(1):17–23

    Google Scholar 

  16. Bergveld P, Meijer WHJ (1981) A new Technique for the suppression of the MECG. IEEE Trans Biomed Eng 28(4):348–354

    Article  Google Scholar 

  17. Jagannath DJ, Immanuel Selvakumar A (2014) Issues and research on foetal electrocardiogram signal elicitation. Biomed Signal Process Control 10:224–244

    Article  Google Scholar 

  18. Kam A, Cohen A (1999) Detection of fetal ECG with IIR adaptive filtering and genetic algorithms. In: IEEE international conference on acoustics, speech, and signal processing (ICASSP’99) Phoenix, AZ, USA, vol 4, pp 2335–2338

    Google Scholar 

  19. Echeverria JC et al (1996) Fetal QRS extraction based on wavelet analysis and pattern matching. In: Engineering in medicine and biology society. Bridging disciplines for biomedicine. Proceedings of the 18th Annual International Conference of the IEEE, vol 4

    Google Scholar 

  20. Matonia ADAM et al (2005) Modelling of non-invasively recorded maternal and fetal electrocardiographic signals. Biocybern Biomed Eng 25(2):27–39

    Google Scholar 

  21. Goldberger AL et al (2000) PhysioBank physiotoolkit, and physionet: components of a new research resource for complex physiologic signals, Circulation 12 (101) e215–e220. http://physionet.org/physiobank/database/

    Article  Google Scholar 

  22. Abdominal and direct fetal electrocardiogram database. www.physionet.org/physiobank/database/adfecgdb. Accessed 15 June 2017

  23. Non-invasive fetal electrocardiogram database. https://physionet.org/physiobank/database/nifecgdb. Accessed 15 June 2017

  24. Physionet challenge 2013. http://physionet.org/physiobank/database/challenge/2013/set-a. Accessed 15 June 2017

  25. Algunaidi M, Sheikh M et al (2009) Fetal heart rate monitoring based on adaptive noise cancellation and maternal QRS removal window. Eur J Sci Res 27(4):565–575

    Google Scholar 

  26. Varanini M et al (2014) An efficient unsupervised fetal QRS complex detection from abdominal maternal ECG. Physiol Meas 35(8):1607

    Article  Google Scholar 

  27. Jain AK et al (2000) Statistical pattern recognition: a review. IEEE Trans Pattern Anal Mach Intell 22(1):4–37

    Article  Google Scholar 

  28. Furno GS (1982) QRS detection using automata theory in a battery-powered microprocessor system. University of Wisconsin–Madison

    Google Scholar 

  29. Dobbs et al (1984) QRS detection by template matching using real-time correlation on a microcomputer. J Clin Eng 9(3):197–212

    Article  Google Scholar 

  30. Pan J, Tompkins WJ (1985) A real-time QRS detection algorithm. IEEE Trans Biomed Eng 3:230–236

    Article  Google Scholar 

  31. Marchon N, Naik G (2016) QRS detector for maternal abdominal ECG. In: Presented at the IEEE International Conference on Signal and Information Processing (IConSIP-2016), Nanded, India, Oct 6–8

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Niyan Marchon .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer Nature Singapore Pte Ltd.

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Marchon, N., Naik, G. (2018). Assessment of the Fetal Health Using NI-aECG. In: Bhattacharyya, S., Gandhi, T., Sharma, K., Dutta, P. (eds) Advanced Computational and Communication Paradigms. Lecture Notes in Electrical Engineering, vol 475. Springer, Singapore. https://doi.org/10.1007/978-981-10-8240-5_40

Download citation

  • DOI: https://doi.org/10.1007/978-981-10-8240-5_40

  • Published:

  • Publisher Name: Springer, Singapore

  • Print ISBN: 978-981-10-8239-9

  • Online ISBN: 978-981-10-8240-5

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics