Skip to main content

Part of the book series: Lecture Notes in Electrical Engineering ((LNEE,volume 476))

  • 1238 Accesses

Abstract

It is imperative that the advancement in technology will require a complicated process to get better, precise, smaller size products. In the process, complexity boils down to modeling of the system to get the insight of the entire process control. So modeling minimizes the cost and time of the process involved in any precisely controlled system. The proposed technique of Floating Admittance Matrix approach (FAM) is very simple and straightforward for both active and passive components and circuits.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Pieter Eykhoff, System Identification, Springer (Hardcover), 1974.

    Google Scholar 

  2. Verlan, V.V, Network Analysis by the Method of Integral Equation, Journal of Electron Modeling, 5, 5,1021–1031, 1985.

    Google Scholar 

  3. Wai-Kai Chen, On second-order cofactors and null return difference in feedback amplifier theory, International Journal of Circuit Theory and Applications, Volume 6 Issue 3, Pages 305–312, Dec 2006.

    Google Scholar 

  4. Balbanian, N. and Bickart, T.A., Electrical Network Theory, John Wiley.

    Google Scholar 

  5. Friedman and R. Gulliver, Mathematical modeling for instructors, Technical Report 1254, Institute for Mathematics and its Applications, 1994.

    Google Scholar 

  6. E. Edwards and M. Hamson, Guide to Mathematical Modeling, CRC, 1990.

    Google Scholar 

  7. J. G. Andrews and R. R. McLone, Mathematical Modeling, Butterworths, 1976.

    Google Scholar 

  8. D. Burghes, P. Galbraith, N. Price, and A. Sherlock, Mathematical Modeling, Prentice Hall, 1996.

    Google Scholar 

  9. R. R. Clements, Mathematical Modeling: A Case Study Approach, Cambridge Press University, 1989.

    Google Scholar 

  10. M. Cross and A. O. Moscardini, Learning the Art of Mathematical Modeling, Ellis Horwood, 1985.

    Google Scholar 

  11. C. L. Dym and E. S. Ivey, Principles of Mathematical Modeling, 58 Academic Press, 1980.

    Google Scholar 

  12. Bender, E.A., An Introduction to mathematical Modeling, Wiley, 1978. 40. P. Doucet and P.B. Sloep, Mathematical Modeling in the life Sciences, Ellis Horwood, 1992.

    Google Scholar 

  13. Aris, Rutherford [1978] (1994), Mathematical Modeling Techniques, New York: Dover. ISBN 0-486-68131-9.

    Google Scholar 

  14. Bender, E. A. [1978] (2000), An Introduction to Mathematical Modeling, New York : Dover. ISBN 0-486-41180-X.

    Google Scholar 

  15. Lin, C. C. & Segel, L. A. (1988), Mathematics Applied to Deterministic Problems in the Natural Sciences, Philadelphia: SIAM. ISBN 0-89871-229-7.

    Google Scholar 

  16. Gershenfeld, N. (1998), The Nature of Mathematical Modeling, Cambridge University Press ISBN 0-521-57095-6.

    Google Scholar 

  17. Baehr, Jason. (2006), “A Priori and A Posteriori,” Internet Encyclopedia of Philosophy.

    Google Scholar 

  18. I. Getreu, Modeling the Bipolar Transistor, Beaverton, Ore: 98 Tektronix, Inc., 1976.

    Google Scholar 

  19. Otso Juntunen (1998); A Two-Port S-Parameter Data Transformation; Circuit Theory Laboratory Report Series, CT-35, Helsinki University of Technology, Finland, Espoo.

    Google Scholar 

  20. B. P. Singh, Unified Approach to Electronics Circuit Analysis: IJEEE, Vol, pp. 276–285, July 1978.

    Google Scholar 

  21. B. P. Singh, Active Bridge for Measurement of the Admittance Parameters of the Transistor; Indian Journal of Pure & Applied Physics, Vol.15, pp. 783–786, Nov. 1976.

    Google Scholar 

  22. B. P. Singh, A New Active Bridge for Measuring FET Parameters; J Phys. E Scientific, Instruments, Vol. 11, pp. 667–670, 1978.

    Google Scholar 

  23. B.P. Singh, Meena Singh, Sanjay Kumar Roy, and S.N. Shukla, “Mathematical Modeling of Electronic Devices and its integration,” Proceedings of National Seminar on Recent Advances on Information Technology, pp. 494–502, Feb. 6–7, 2009, Indian School of Mines Dhanbad University, Published by Allied Publishers Pvt. Ltd.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Meena Singh .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Singapore Pte Ltd.

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Singh, M., Singh, B.P. (2019). Floating Admittance Matrix Approach to Model Development of Active Devices and Circuits. In: Nath, V., Mandal, J. (eds) Proceeding of the Second International Conference on Microelectronics, Computing & Communication Systems (MCCS 2017). Lecture Notes in Electrical Engineering, vol 476. Springer, Singapore. https://doi.org/10.1007/978-981-10-8234-4_24

Download citation

  • DOI: https://doi.org/10.1007/978-981-10-8234-4_24

  • Published:

  • Publisher Name: Springer, Singapore

  • Print ISBN: 978-981-10-8233-7

  • Online ISBN: 978-981-10-8234-4

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics