Skip to main content

Functional Nucleic Acid Based Platforms for Heavy Metal Ion Detection

  • Chapter
  • First Online:
  • 707 Accesses

Abstract

The detection of heavy metal ions plays a crucial role in the monitoring of environmental pollution. With the discovery of functional nucleic acids, more and more scientists have combined the detection of heavy metals with functional nucleic acids, because functional nucleic acids can convert metal ion signals into nucleic acid signals. With the continuous development of metal ion detection methods, the absolute quantification method of metal ions is gradually expected by people. Therefore, metal ions can be detected by a combination of digital PCR (dPCR) and functional nucleic acid. As the same time, dPCR have many advantages for metal ions detection and many examples was developed. Biological ion channels that exist in living organisms serve a significant function in vital activities, nanopore sensing combining with DNA also providing an opportunity to control or regulate the molecular transport on demand. In this chapter, Digital PCR and Nanopore sensing composed of FNAs for signal recognition and sensing components for signal output are reviewed for diverse categories of metal ions.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   139.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   179.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   179.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. J. Willis, Determination of lead and other heavy metals in urine by atomic absorption spectroscopy. Anal. Chem. 34(6), 614–617 (1962)

    Article  CAS  Google Scholar 

  2. F. Shemirani, M. Rajabi, Preconcentration of chromium (III) and speciation of chromium by electrothermal atomic absorption spectrometry using cellulose adsorbent. Fresenius J. Anal. Chem. 371(7), 1037–1040 (2001)

    Article  CAS  PubMed  Google Scholar 

  3. K. Uysal, Y. Emre, E. Köse, The determination of heavy metal accumulation ratios in muscle, skin and gills of some migratory fish species by inductively coupled plasma-optical emission spectrometry (ICP-OES) in Beymelek Lagoon (Antalya/Turkey). Microchem. J. 90(1), 67–70 (2008)

    Article  CAS  Google Scholar 

  4. W. Wolf, M. Taylor, B. Hughes, T. Tiernan, R. Sievers, Determination of chromium and beryllium at the picogram level by gas chromatography-mass spectrometry. Anal. Chem. 44(3), 616–618 (1972)

    Article  CAS  PubMed  Google Scholar 

  5. W. Zhou, R. Saran, J. Liu, Metal Sensing by DNA. Chem. Rev. 117, 8272–8325 (2017)

    Article  CAS  PubMed  Google Scholar 

  6. B.C. Ye, B.C. Yin, Highly sensitive detection of mercury (II) ions by fluorescence polarization enhanced by gold nanoparticles. Angew. Chem. Int. Ed. 47(44), 8386–8389 (2008)

    Article  CAS  Google Scholar 

  7. J. Liu, Z. Cao, Y. Lu, Functional nucleic acid sensors. Chem. Rev. 109(5), 1948–1998 (2009)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. S. Oliveira, O. Corduneanu, A. Oliveira-Brett, In situ evaluation of heavy metal-DNA interactions using an electrochemical DNA biosensor. Bioelectrochemistry 72(1), 53–58 (2008)

    Article  CAS  PubMed  Google Scholar 

  9. D. Li, A. Wieckowska, I. Willner, Optical analysis of Hg2+ ions by oligonucleotide-gold-nanoparticle hybrids and DNA-based machines. Angew. Chem. 120(21), 3991–3995 (2008)

    Article  Google Scholar 

  10. W. Li, Y. Yang, J. Chen, Q. Zhang, Y. Wang, F. Wang, C. Yu, Detection of lead (II) ions with a DNAzyme and isothermal strand displacement signal amplification. Biosens. Bioelectron. 53, 245–249 (2014)

    Article  CAS  PubMed  Google Scholar 

  11. J. Huang, X. Gao, J. Jia, J.-K. Kim, Z. Li, Graphene oxide-based amplified fluorescent biosensor for Hg2+ detection through hybridization chain reactions. Anal. Chem. 86(6), 3209–3215 (2014)

    Article  CAS  PubMed  Google Scholar 

  12. A. Daser, M. Thangavelu, R. Pannell, A. Forster, L. Sparrow, G. Chung, P.H. Dear, T.H. Rabbitts, Interrogation of genomes by molecular copy-number counting (MCC). Nat. Methods. 3(6), 447 (2006)

    Article  CAS  PubMed  Google Scholar 

  13. P.H. Dear, P.R. Cook, Happy mapping: linkage mapping using a physical analogue of meiosis. Nucleic Acids Res. 21(1), 13–20 (1993)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. R. Sanders, J.F. Huggett, C.A. Bushell, S. Cowen, D.J. Scott, C.A. Foy, Evaluation of digital PCR for absolute DNA quantification. Anal. Chem. 83(17), 6474–6484 (2011)

    Article  CAS  PubMed  Google Scholar 

  15. L.B. Pinheiro, V.A. Coleman, C.M. Hindson, J. Herrmann, B.J. Hindson, S. Bhat, K.R. Emslie, Evaluation of a droplet digital polymerase chain reaction format for DNA copy number quantification. Anal. Chem. 84(2), 1003–1011 (2011)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. S. Bhat, J. Herrmann, P. Armishaw, P. Corbisier, K.R. Emslie, Single molecule detection in nanofluidic digital array enables accurate measurement of DNA copy number. Anal. Bioanal. Chem. 394(2), 457–467 (2009)

    Article  CAS  PubMed  Google Scholar 

  17. E.A. Ottesen, J.W. Hong, S.R. Quake, J.R. Leadbetter, Microfluidic digital PCR enables multigene analysis of individual environmental bacteria. Science 314(5804), 1464–1467 (2006)

    Article  CAS  PubMed  Google Scholar 

  18. L. Warren, D. Bryder, I.L. Weissman, S.R. Quake, Transcription factor profiling in individual hematopoietic progenitors by digital RT-PCR. Proc. Natl. Acad. Sci. 103(47), 17807–17812 (2006)

    Article  CAS  PubMed  Google Scholar 

  19. H.C. Fan, S.R. Quake, Detection of aneuploidy with digital polymerase chain reaction. Anal. Chem. 79(19), 7576–7579 (2007)

    Article  CAS  PubMed  Google Scholar 

  20. B.J. Hindson, K.D. Ness, D.A. Masquelier, P. Belgrader, N.J. Heredia, A.J. Makarewicz, I.J. Bright, M.Y. Lucero, A.L. Hiddessen, T.C. Legler, High-throughput droplet digital PCR system for absolute quantitation of DNA copy number. Anal. Chem. 83(22), 8604–8610 (2011)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. E. Day, P.H. Dear, F. McCaughan, Digital PCR strategies in the development and analysis of molecular biomarkers for personalized medicine. Methods 59(1), 101–107 (2013)

    Article  CAS  PubMed  Google Scholar 

  22. M.M. Kiss, L. Ortoleva-Donnelly, N.R. Beer, J. Warner, C.G. Bailey, B.W. Colston, J.M. Rothberg, D.R. Link, J.H. Leamon, High-throughput quantitative polymerase chain reaction in picoliter droplets. Anal. Chem. 80(23), 8975–8981 (2008)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. M.D. GP, D. Do, C.M. Litterst, D. Maar, C.M. Hindson, E.R. Steenblock, T.C. Legler, Y. Jouvenot, S.H. Marrs, A. Bemis, Multiplexed target detection using DNA-binding dye chemistry in droplet digital PCR. Anal. Chem. 85(23), 11619–11627 (2013)

    Article  CAS  Google Scholar 

  24. S.C. Taylor, J. Carbonneau, D.N. Shelton, G. Boivin, Optimization of droplet digital PCR from RNA and DNA extracts with direct comparison to RT-qPCR: Clinical implications for quantification of oseltamivir-resistant subpopulations. J. Virol. Methods 224, 58–66 (2015)

    Article  CAS  PubMed  Google Scholar 

  25. M.C. Strain, S.M. Lada, T. Luong, S.E. Rought, S. Gianella, V.H. Terry, C.A. Spina, C.H. Woelk, D.D. Richman, Highly precise measurement of HIV DNA by droplet digital PCR. PLoS One 8(4), e55943 (2013)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. T.C. Dingle, R.H. Sedlak, L. Cook, K.R. Jerome, Tolerance of droplet-digital PCR vs real-time quantitative PCR to inhibitory substances. Clin. Chem. 59(11), 1670–1672 (2013)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. N. Rački, T. Dreo, I. Gutierrez-Aguirre, A. Blejec, M. Ravnikar, Reverse transcriptase droplet digital PCR shows high resilience to PCR inhibitors from plant, soil and water samples. Plant Methods 10(1), 42 (2014)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. M.F. Sanmamed, S. Fernández-Landázuri, C. Rodríguez, R. Zárate, M.D. Lozano, L. Zubiri, J.L. Perez-Gracia, S. Martín-Algarra, A. González, Quantitative cell-free circulating BRAFV600E mutation analysis by use of droplet digital PCR in the follow-up of patients with melanoma being treated with BRAF inhibitors. Clin. Chem. 61(1), 297–304 (2015)

    Article  CAS  PubMed  Google Scholar 

  29. A.V. Todd, C.J. Fuery, H.L. Impey, T.L. Applegate, M.A. Haughton, DzyNA-PCR: use of DNAzymes to detect and quantify nucleic acid sequences in a real-time fluorescent format. Clin. Chem. 46(5), 625–630 (2000)

    PubMed  CAS  Google Scholar 

  30. F. Wang, Z. Wu, Y. Lu, J. Wang, J.H. Jiang, R.Q. Yu, A label-free DNAzyme sensor for lead (II) detection by quantitative polymerase chain reaction. Anal. Biochem. 405(2), 168–173 (2010)

    Article  CAS  PubMed  Google Scholar 

  31. J. Xu, Y. Sun, Y. Sheng, Y. Fei, J. Zhang, D. Jiang, Engineering a DNA-cleaving DNAzyme and PCR into a simple sensor for zinc ion detection. Anal. Bioanal. Chem. 406(13), 3025–3029 (2014)

    Article  CAS  PubMed  Google Scholar 

  32. N. Cheng, P. Zhu, Y. Xu, K. Huang, Y. Luo, Z. Yang, W. Xu, High-sensitivity assay for Hg (II) and Ag (I) ion detection: a new class of droplet digital PCR logic gates for an intelligent DNA calculator. Biosens. Bioelectron. 84, 1–6 (2016)

    Article  CAS  PubMed  Google Scholar 

  33. S. Johannsen, N. Megger, D. Böhme, R.K. Sigel, J. Müller, Solution structure of a DNA double helix with consecutive metal-mediated base pairs. Nat. Chem. 2(3), 229–234 (2010)

    Article  CAS  PubMed  Google Scholar 

  34. S. Katz, The reversible reaction of Hg (II) and double-stranded polynucleotides a step-function theory and its significance. Biochim. Biophys. Acta (BBA)-Specialized Sect. Nucleic Acids Relat. Subj 68, 240–253 (1963)

    CAS  Google Scholar 

  35. J. Liu, Y. Lu, A DNAzyme catalytic beacon sensor for paramagnetic Cu2+ ions in aqueous solution with high sensitivity and selectivity. J. Am. Chem. Soc. 129(32), 9838–9839 (2007)

    Article  CAS  PubMed  Google Scholar 

  36. P. Zhu, Y. Shang, W. Tian, K. Huang, Y. Luo, W. Xu, Ultra-sensitive and absolute quantitative detection of Cu2+ based on DNAzyme and digital PCR in water and drink samples. Food Chem. 221, 1770–1777 (2017)

    Article  CAS  PubMed  Google Scholar 

  37. P. Zhu, W. Tian, N. Cheng, K. Huang, Y. Luo, W. Xu, Ultra-sensitive “turn-on” detection method for Hg2+ based on mispairing biosensor and emulsion PCR. Talanta 155, 168–174 (2016)

    Article  CAS  PubMed  Google Scholar 

  38. E. Perozo, D.M. Cortes, P. Sompornpisut, A. Kloda, B. Martinac, Open channel structure of MscL and the gating mechanism of mechanosensitive channels. Nature 418(6901), 942 (2002)

    Article  CAS  PubMed  Google Scholar 

  39. X. Hou, W. Guo, F. Xia, F.Q. Nie, H. Dong, Y. Tian, L. Wen, L. Wang, L. Cao, Y. Yang, A biomimetic potassium responsive nanochannel: G-quadruplex DNA conformational switching in a synthetic nanopore. J. Am. Chem. Soc. 131(22), 7800–7805 (2009)

    Article  CAS  PubMed  Google Scholar 

  40. Y. Jiang, N. Liu, W. Guo, F. Xia, L. Jiang, Highly-efficient gating of solid-state nanochannels by DNA supersandwich structure containing ATP aptamers: a nanofluidic IMPLICATION logic device. J. Am. Chem. Soc. 134(37), 15395–15401 (2012)

    Article  CAS  PubMed  Google Scholar 

  41. W. Guo, L. Cao, J. Xia, F.Q. Nie, W. Ma, J. Xue, Y. Song, D. Zhu, Y. Wang, L. Jiang, Energy harvesting with single-ion-selective nanopores: aconcentration-gradient-driven nanofluidic power source. Adv. Funct. Mater. 20(8), 1339–1344 (2010)

    Article  CAS  Google Scholar 

  42. L. Wen, X. Hou, Y. Tian, J. Zhai, L. Jiang, Bio-inspired photoelectric conversion based on smart-gating nanochannels. Adv. Funct. Mater. 20(16), 2636–2642 (2010)

    Article  CAS  Google Scholar 

  43. S. Wen, T. Zeng, L. Liu, K. Zhao, Y. Zhao, X. Liu, H.C. Wu, Highly sensitive and selective DNA-based detection of mercury (II) with α-hemolysin nanopore. J. Am. Chem. Soc. 133(45), 18312–18317 (2011)

    Article  CAS  PubMed  Google Scholar 

  44. Z. Zhang, D. Balogh, F. Wang, I. Willner, Smart mesoporous SiO2 nanoparticles for the DNAzyme-induced multiplexed release of substrates. J. Am. Chem. Soc. 135(5), 1934–1940 (2013)

    Article  CAS  PubMed  Google Scholar 

  45. Y. Chen, D. Zhou, Z. Meng, J. Zhai, An ion-gating multinanochannel system based on a copper-responsive self-cleaving DNAzyme. Chem. Commun. 52(65), 10020–10023 (2016)

    Article  CAS  Google Scholar 

  46. F. Xia, W. Guo, Y. Mao, X. Hou, J. Xue, H. Xia, L. Wang, Y. Song, H. Ji, Q. Ouyang, Gating of single synthetic nanopores by proton-driven DNA molecular motors. J. Am. Chem. Soc. 130(26), 8345–8350 (2008)

    Article  CAS  PubMed  Google Scholar 

  47. X. Hou, Y. Liu, H. Dong, F. Yang, L. Li, L. Jiang, A pH-gating ionic transport nanodevice: asymmetric chemical modification of single nanochannels. Adv. Mater. 22(22), 2440–2443 (2010)

    Article  CAS  PubMed  Google Scholar 

  48. E.B. Kalman, O. Sudre, I. Vlassiouk, Z.S. Siwy, Control of ionic transport through gated single conical nanopores. Anal. Bioanal. Chem. 394(2), 413–419 (2009)

    Article  CAS  PubMed  Google Scholar 

  49. X. Hou, F. Yang, L. Li, Y. Song, L. Jiang, D. Zhu, A biomimetic asymmetric responsive single nanochannel. J. Am. Chem. Soc. 132(33), 11736–11742 (2010)

    Article  CAS  PubMed  Google Scholar 

  50. Y. Tian, X. Hou, L. Jiang, Biomimetic ionic rectifier systems: asymmetric modification of single nanochannels by ion sputtering technology. J. Electroanal. Chem. 656(1), 231–236 (2011)

    Article  CAS  Google Scholar 

  51. M. Liu, H. Zhang, K. Li, L. Heng, S. Wang, Y. Tian, L. Jiang, A bio-inspired potassium and pH responsive double-gated nanochannel. Adv. Funct. Mater. 25(3), 421–426 (2015)

    Article  CAS  Google Scholar 

  52. X. Hou, W. Guo, L. Jiang, Biomimetic smart nanopores and nanochannels. Chem. Soc. Rev. 40(5), 2385–2401 (2011)

    Article  CAS  PubMed  Google Scholar 

  53. R. Wei, T.G. Martin, U. Rant, H. Dietz, DNA origami gatekeepers for solid-state nanopores. Angew. Chem. 124(20), 4948–4951 (2012)

    Article  Google Scholar 

  54. S.Z. Chu, K. Wada, S. Inoue, M. Isogai, A. Yasumori, Fabrication of ideally ordered nanoporousaluminafilms and integrated alumina nanotubulearrays by high-field anodization. Adv. Mater. 17(17), 2115–2119 (2005)

    Article  CAS  Google Scholar 

  55. J.J. Kasianowicz, E. Brandin, D. Branton, D.W. Deamer, Characterization of individual polynucleotide molecules using a membrane channel. Proc. Natl. Acad. Sci. 93(24), 13770–13773 (1996)

    Article  CAS  PubMed  Google Scholar 

  56. G. Wang, B. Zhang, J.R. Wayment, J.M. Harris, H.S. White, Electrostatic-gated transport in chemically modified glass nanopore electrodes. J. Am. Chem. Soc. 128(23), 7679–7686 (2006)

    Article  CAS  PubMed  Google Scholar 

  57. C.C. Chen, Y. Zhou, L.A. Baker, Scanning ion conductance microscopy. Annu. Rev. Anal. Chem. 5, 207–228 (2012)

    Article  CAS  PubMed  Google Scholar 

  58. R.M. Souto, Y. González-García, J. Izquierdo, S. González, Examination of organic coatings on metallic substrates by scanning electrochemical microscopy in feedback mode: revealing the early stages of coating breakdown in corrosive environments. Corros. Sci. 52(3), 748–753 (2010)

    Article  CAS  Google Scholar 

  59. J. Feng, J. Liu, B. Wu, G. Wang, Impedance characteristics of amine modified single glass nanopores. Anal. Chem. 82(11), 4520–4528 (2010)

    Article  CAS  PubMed  Google Scholar 

  60. E.A. Manrao, I.M. Derrington, A.H. Laszlo, K.W. Langford, M.K. Hopper, N. Gillgren, M. Pavlenok, M. Niederweis, J.H. Gundlach, Reading DNA at single-nucleotide resolution with a mutant MspAnanopore and phi29 DNA polymerase. Nat. Biotechnol. 30(4), 349–353 (2012)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Luo, Y. (2018). Functional Nucleic Acid Based Platforms for Heavy Metal Ion Detection. In: Functional Nucleic Acid Based Biosensors for Food Safety Detection. Springer, Singapore. https://doi.org/10.1007/978-981-10-8219-1_9

Download citation

Publish with us

Policies and ethics