Skip to main content

Part of the book series: Springer Theses ((Springer Theses))

  • 860 Accesses

Abstract

In recent efforts of making aircraft more energy efficient, aircraft-industries are moving towards More Electric Aircraft (MEA). MEA offers several benefits compared to a conventional aircraft system including improved power transmission efficiency, reduced fuel consumption, lesser weight and reduced environmental impact. One of the enabling technologies for MEA is power electronic converter which is required to convert and condition the generated electric power for different aircraft loads (Rosero et al., IEEE Aerosp Electron Syst Mag, 22:3–9, 2007) [1], (Wheeler and Bozhko, IEEE Electrif Mag, 2:6–12, 2014) [2], (Sarlioglu and Morris, IEEE Trans Transp Electrif 1:54–64, 2015) [3].

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 109.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 139.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 139.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    ESR is reduced by 0.7 factor for high frequency and temperature increase. The size of capacitor is 35 mm (d) and 55 mm (l). The maximum allowable temperature rise is taken as \(10\,^{\circ }\)C.

References

  1. J. Rosero, J. Ortega, E. Aldabas, L. Romeral, Moving towards a more electric aircraft. IEEE Aerosp. Electron. Syst. Mag. 22, 3–9 (2007)

    Article  Google Scholar 

  2. P. Wheeler, S. Bozhko, The more electric aircraft: technology and challenges. IEEE Electrif. Mag. 2, 6–12 (2014)

    Article  Google Scholar 

  3. B. Sarlioglu, C. Morris, More electric aircraft: review, challenges, and opportunities for commercial transport aircraft. IEEE Trans. Transp. Electrif. 1, 54–64 (2015)

    Article  Google Scholar 

  4. Y. Deng, S. Foo, I. Bhattacharya, Regenerative electric power for more electric aircraft, in IEEE SOUTHEASTCON 2014 (2014), pp. 1–5

    Google Scholar 

  5. B. Sarlioglu, Advances in ac-dc power conversion topologies for more electric aircraft, in 2012 IEEE Transportation Electrification Conference and Expo (ITEC) (2012), pp. 1–6

    Google Scholar 

  6. R. Jones, The more electric aircraft: the past and the future?, in IEE Colloquium on Electrical Machines and Systems for the More Electric Aircraft (Ref. No. 1999/180) (1999), pp. 1/1–1/4

    Google Scholar 

  7. R. Naayagi, A review of more electric aircraft technology, in 2013 International Conference on Energy Efficient Technologies for Sustainability (ICEETS) (2013), pp. 750–753

    Google Scholar 

  8. J. Vieira, J. Oliver, P. Alou, J. Cobos, Power converter topologies for a high performance transformer rectifier unit in aircraft applications, in 2014 11th IEEE/IAS International Conference on Industry Applications (INDUSCON) (2014), pp. 1–8

    Google Scholar 

  9. J. Lee, Aircraft transformer-rectifier units. Stud. Q. J. 42, 69–71 (1972)

    Article  Google Scholar 

  10. J. Kolar, T. Friedli, The essence of three-phase pfc rectifier systems-part i. IEEE Trans. Power Electron. 28, 176–198 (2013)

    Article  Google Scholar 

  11. T. Friedli, M. Hartmann, J. Kolar, The essence of three-phase pfc rectifier systems-part ii. IEEE Trans. Power Electron. 29, 543–560 (2014)

    Article  Google Scholar 

  12. F. Xu, B. Guo, L. Tolbert, F. Wang, B. Blalock, An all-sic three-phase buck rectifier for high-efficiency data center power supplies. IEEE Trans. Ind. Appl. 49, 2662–2673 (2013)

    Article  Google Scholar 

  13. Y. Zhang, L. Jin, Y. Jing, Z. Zhao, T. Lu, Three-level pwm rectifier based high efficiency batteries charger for ev, in 2013 IEEE Vehicle Power and Propulsion Conference (VPPC) (2013), pp. 1–4

    Google Scholar 

  14. S. Ratanapanachote, H. J. Cha, P. Enjeti, A digitally controlled switch mode power supply based on matrix converter, in 2004 IEEE 35th Annual Power Electronics Specialists Conference, 2004. PESC 04, vol. 3 (2004), pp. 2237–2243

    Google Scholar 

  15. J. Sandoval, S. Essakiappan, P. Enjeti, A bidirectional series resonant matrix converter topology for electric vehicle dc fast charging, in 2015 IEEE Applied Power Electronics Conference and Exposition (APEC) (2015), pp. 3109–3116

    Google Scholar 

  16. Y. Wang, L. Yang, C. Wang, Z. Meng, Three phase high step-up single-stage flyback converter with no electrolytic capacitor, in 2014 International Electronics and Application Conference and Exposition (PEAC) (2014), pp. 1207–1211

    Google Scholar 

  17. B. Tamyurek, D. Torrey, A three-phase unity power factor single-stage ac-dc converter based on an interleaved flyback topology. IEEE Trans. Power Electron. 26, 308–318 (2011)

    Article  Google Scholar 

  18. T. Zhao, J. Su, D. Xu, M. Mao, Commutation compensation for matrix based rectifiers due to leakage inductances of isolation transformer, in 2015 9th International Conference on Power Electronics and ECCE Asia (ICPE-ECCE Asia) (2015), pp. 1803–1808

    Google Scholar 

  19. H. Keyhani, H. Toliyat, Isolated zvs high-frequency-link ac-ac converter with a reduced switch count. IEEE Trans. Power Electron. 29, 4156–4166 (2014)

    Article  Google Scholar 

  20. H. Keyhani, H. Toliyat, W. Alexander, A single-stage multi-string quasi-resonant inverter for grid-tied photovoltaic systems, in 2013 IEEE Energy Conversion Congress and Exposition (ECCE) (2013), pp. 1925–1932

    Google Scholar 

  21. H. Keyhani, H. Toliyat, M. Harfman-Todorovic, R. Lai, R. Datta, An isolated resonant ac-link three-phase ac-ac converter using a single hf transformer. IEEE Trans. Ind. Electron. 61, 5174–5183 (2014)

    Article  Google Scholar 

  22. H. Keyhani, H. Toliyat, M. Todorovic, R. Lai, R. Datta, Step-up down three-phase resonant high-frequency ac-link inverters. IET Power Electron. 7, 1246–1255 (2014)

    Article  Google Scholar 

  23. H. Keyhani, M. Johnson, H. Toliyat, A soft-switched highly reliable grid-tied inverter for pv applications, in 2014 Twenty-Ninth Annual IEEE Applied Power Electronics Conference and Exposition (APEC) (2014), pp. 1725–1732

    Google Scholar 

  24. H. Keyhani, H. Toliyat, Single-stage multistring pv inverter with an isolated high-frequency link and soft-switching operation. IEEE Trans. Power Electron. 29, 3919–3929 (2014)

    Article  Google Scholar 

  25. N.X. Bac, D. Vilathgamuwa, U. Madawala, A sic-based matrix converter topology for inductive power transfer system. IEEE Trans. Power Electron. 29, 4029–4038 (2014)

    Article  Google Scholar 

  26. C.H. Yang, T.J. Liang, K.H. Chen, J.S. Li, J.S. Lee, Loss analysis of half-bridge llc resonant converter, in 2013 1st International Future Energy Electronics Conference (IFEEC) (2013), pp. 155–160

    Google Scholar 

  27. H. Krishnamoorthy, P. Garg, P. Enjeti, A matrix converter-based topology for high power electric vehicle battery charging and v2g application, in IECON 2012 - 38th Annual Conference on IEEE Industrial Electronics Society (2012), pp. 2866–2871

    Google Scholar 

  28. J.J. Sandoval, S. Essakiappan, P. Enjeti, A bidirectional series resonant matrix converter topology for electric vehicle dc fast charging, in 2015 IEEE Applied Power Electronics Conference and Exposition (APEC) (2015), pp. 3109–3116

    Google Scholar 

  29. C. Li, Y. Zhong, D. Xu, Soft-switching three-phase matrix based isolated ac-dc converter for dc distribution system, in 2015 IEEE Energy Conversion Congress and Exposition (ECCE) (2015), pp. 6755–6761

    Google Scholar 

  30. Aluminum electrolytic capacitors, https://media.digikey.com/pdf/Data%20Sheets/Epcos%20PDFs/B43510_B43520_Rev_Jun_2015.pdf. [Online]

  31. Aluminum Electrolytic Capacitor Application Guide, http://www.cde.com/resources/catalogs/AEappGUIDE.pdf. [Online]

  32. Transformer rectifier unit, http://www.powercontrolsystemsgroup.com/pdf/b804.pdf. [Online]

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Amit Kumar Singh .

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Singh, A.K. (2018). A Matrix Based Isolated Three Phase AC–DC Converter. In: Analysis and Design of Power Converter Topologies for Application in Future More Electric Aircraft. Springer Theses. Springer, Singapore. https://doi.org/10.1007/978-981-10-8213-9_3

Download citation

  • DOI: https://doi.org/10.1007/978-981-10-8213-9_3

  • Published:

  • Publisher Name: Springer, Singapore

  • Print ISBN: 978-981-10-8212-2

  • Online ISBN: 978-981-10-8213-9

  • eBook Packages: EnergyEnergy (R0)

Publish with us

Policies and ethics