Skip to main content

Part of the book series: Springer Theses ((Springer Theses))

  • 889 Accesses

Abstract

Since 1960, the worldwide air passenger traffic has been growing at an average yearly rate of 9% and it has been estimated that it will continue to grow with a 5–7% rate into the foreseeable future. One obvious reason for such growth is technological advances in aircraft system leading to improved aircraft-efficiency and reduced cost. However, with increased air traffic, the aircraft industries are also facing challenges in terms of \(\mathrm{CO}_{2}\) emission and safety [1]. Today, air transport is responsible for 2% of the total man made \(\mathrm{CO}_{2}\) emission which is estimated to increase further to 3% by 2050. In this regard, the Advisory Council for Aeronautics Research in Europe has set several goals to be achieved by 2020 including 50% reduction of \(\mathrm{CO}_{2}\) emissions; an 80% reduction of \(\mathrm{NO}_{X}\) emissions, and a 50% reduction of external noise [2, 3]. Thus, currently, the aircraft industries are driven by three major objectives - 1. improving emissions 2. improving fuel economy and, 3. reducing cost.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 109.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 139.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 139.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    Describe the multiplication effect in an original weight saving. Source wikipedia.

References

  1. M. Hartmann, Ultra-Compact and Ultra-Efficient Three-Phase PWM Rectifier Systems for More Electric Aircraft. PhD thesis, ETH Zurich, 2011

    Google Scholar 

  2. K. Rajashekara, Converging technologies for electric/hybrid vehicles and more electric aircraft systems (2010)

    Google Scholar 

  3. A. Boglietti, A. Cavagnino, A. Tenconi, S. Vaschetto, P. di Torino, The safety critical electric machines and drives in the more electric aircraft: a survey, in IECON’09-35th Annual Conference of IEEE Industrial Electronics (2009), pp. 2587–2594

    Google Scholar 

  4. J. Rosero, J. Ortega, E. Aldabas, L. Romeral, Moving towards a more electric aircraft. IEEE Aerosp. Electron. Syst. Mag. 22, 3–9 (2007)

    Article  Google Scholar 

  5. P. Wheeler, S. Bozhko, The more electric aircraft: technology and challenges. IEEE Electrif. Mag. 2, 6–12 (2014)

    Article  Google Scholar 

  6. R. Naayagi, A review of more electric aircraft technology, in 2013 International Conference on Energy Efficient Technologies for Sustainability (ICEETS) (2013), pp. 750–753

    Google Scholar 

  7. R. Jones, The more electric aircraft: the past and the future?, in Proceedings of the IEE Colloquium on Electrical Machines and Systems for the More Electric Aircraft (Ref. No. 1999/180) (1999), pp. 1/1–1/4

    Google Scholar 

  8. B. Sarlioglu, Advances in ac-dc power conversion topologies for more electric aircraft, in IEEE Transportation Electrification Conference and Expo (ITEC), 2012 (2012), pp. 1–6

    Google Scholar 

  9. J.A. Weimer, The role of electric machines and drives in the more electric aircraft, in IEEE International Electric Machines and Drives Conference, 2003. IEMDC’03 (2003), vol. 1, pp. 11–15

    Google Scholar 

  10. R.E.J. Quigley, More electric aircraft, in Proceedings Eighth Annual Applied Power Electronics Conference and Exposition (1993), pp. 906–911

    Google Scholar 

  11. G.H. Gaynor, Boeing and the 787 dreamliner (Wiley-IEEE Press, New York, 2015), p. 320

    Google Scholar 

  12. K.J. Karimi, Future Aircraft Power Systems- Integration Challenges. https://www.ece.cmu.edu/~electriconf/2008/PDFs/Karimi.pdf

  13. D. Koyama, How the More Electric Aircraft is influencing a More Electric Engine and More!. https://sunjet-project.eu/sites/default/files/Rolls-Royce%20-%20Koyama_web.pdf (2015)

  14. J. Clare, Examples of More Electric Aircraft Research in the Aerospace Research Centre. http://www.nottingham.ac.uk/aerospace/documents/moreelectricaircarftresearch.pdf

  15. J. Brombach, A. Lcken, B. Nya, M. Johannsen, D. Schulz, Comparison of different electrical hvdc-architectures for aircraft application, in 2012 Electrical Systems for Aircraft, Railway and Ship Propulsion (ESARS) (2012), pp. 1–6

    Google Scholar 

  16. J. Brombach, M. Jordan, F. Grumm, D. Schulz, Converter topology analysis for aircraft application, in International Symposium on Power Electronics Power Electronics, Electrical Drives, Automation and Motion (2012), pp. 446–451

    Google Scholar 

  17. A. Mallik, W. Ding, A. Khaligh, A comprehensive design approach to an emi filter for a 6-kw three-phase boost power factor correction rectifier in avionics vehicular systems, IEEE Transactions on Vehicular Technology (2016), vol. PP, no. 99, pp. 1–1

    Google Scholar 

  18. B. Sarlioglu, C. Morris, More electric aircraft: review, challenges, and opportunities for commercial transport aircraft. IEEE Trans. Transp. Electrif. 1, 54–64 (2015)

    Article  Google Scholar 

  19. M. Sinnett, 787 No-Bleed Systems: saving Fuel and Enhancing Operational Efficiencies, Boeing Aero Magazine, pp. 6–11

    Google Scholar 

  20. A.C. (2012) Airbus A350 XWB: the aircraft. http://www.airbus-a350.com/the-aircraft/

  21. J. Vieira, J. Oliver, P. Alou, J. Cobos, Power converter topologies for a high performance transformer rectifier unit in aircraft applications, in 2014 11th IEEE/IAS International Conference on Industry Applications (INDUSCON) (2014), pp. 1–8

    Google Scholar 

  22. J. Lee, Aircraft transformer-rectifier units. Stud. Q. J. 42, 69–71 (1972)

    Article  Google Scholar 

  23. G. Gong, M.L. Heldwein, U. Drofenik, J. Minibock, K. Mino, J.W. Kolar, Comparative evaluation of three-phase high-power-factor ac-dc converter concepts for application in future more electric aircraft. IEEE Trans. Ind. Electron. 52, 727–737 (2005)

    Article  Google Scholar 

  24. B. Singh, B. Singh, A. Chandra, K. Al-Haddad, A. Pandey, D. Kothari, A review of three-phase improved power quality ac-dc converters. IEEE Trans. Ind. Electron. 51, 641–660 (2004)

    Article  Google Scholar 

  25. J. Kolar, T. Friedli, The essence of three-phase pfc rectifier systems-part i. IEEE Trans. Power Electron. 28, 176–198 (2013)

    Article  Google Scholar 

  26. T. Friedli, M. Hartmann, J. Kolar, The essence of three-phase pfc rectifier systems-part ii. IEEE Trans. Power Electron. 29, 543–560 (2014)

    Article  Google Scholar 

  27. B.N. Singh, P. Jain, G. Joos, Three-phase ac/dc regulated power supplies: a comparative evaluation of different topologies, in APEC 2000. Fifteenth Annual IEEE Applied Power Electronics Conference and Exposition (Cat. No.00CH37058) (2000), vol. 1, pp. 513–518

    Google Scholar 

  28. K. Nishimura, K. Atsuumi, K. Tachibana, K. Hirachi, S. Moisseev, M. Nakaoka, Practical performance evaluations on an improved circuit topology of active three-phase pfc power converter, in APEC 2001. Sixteenth Annual IEEE Applied Power Electronics Conference and Exposition (Cat. No.01CH37181) (2001), vol. 2, pp. 1308–1314

    Google Scholar 

  29. A.W. Green, J.T. Boys, G.F. Gates, 3-phase voltage sourced reversible rectifier, IEE Proceedings B - Electric Power Applications (1988), vol. 135, pp. 362–370

    Article  Google Scholar 

  30. M. Kumar, L. Huber, M.M. Jovanovi?, Startup procedure for dsp-controlled three-phase six-switch boost pfc rectifier, IEEE Transactions on Power Electronics (2015), vol. 30, pp. 4514–4523

    Article  Google Scholar 

  31. D. Xu, B. Feng, R. Li, K. Mino, H. Umida, A zero voltage switching svm (zvs ndash;svm) controlled three-phase boost rectifier. IEEE Trans. Power Electron. 22, 978–986 (2007)

    Article  Google Scholar 

  32. S. Hiti, D. Borojevic, R. Ambatipudi, R. Zhang, Y. Jiang, Average current control of three-phase pwm boost rectifier, in 26th Annual IEEE Power Electronics Specialists Conference, 1995. PESC ’95 Record (1995), vol. 1, pp. 131–137

    Google Scholar 

  33. Y. Jiang, H. Mao, F.C. Lee, D. Borojevic, Simple high performance three-phase boost rectifiers, in 25th Annual IEEE Power Electronics Specialists Conference, PESC ’94 Record (1994), vol. 2, pp. 1158–1163

    Google Scholar 

  34. M. Hartmann, S.D. Round, H. Ertl, J.W. Kolar, Digital current controller for a 1 mhz, 10 kw three-phase vienna rectifier. IEEE Trans. Power Electron. 24, 2496–2508 (2009)

    Article  Google Scholar 

  35. J.W. Kolar, F.C. Zach, A novel three-phase utility interface minimizing line current harmonics of high-power telecommunications rectifier modules. IEEE Trans. Ind. Electron. 44, 456–467 (1997)

    Article  Google Scholar 

  36. P. Karutz, S.D. Round, M.L. Heldwein, J.W. Kolar, Ultra compact three-phase pwm rectifier, in APEC 07 - Twenty-Second Annual IEEE Applied Power Electronics Conference and Exposition (2007), pp. 816–822

    Google Scholar 

  37. F. Xu, B. Guo, L. Tolbert, F. Wang, B. Blalock, An all-sic three-phase buck rectifier for high-efficiency data center power supplies. IEEE Trans. Ind. Appl. 49, 2662–2673 (2013)

    Article  Google Scholar 

  38. T. Nussbaumer, M. Baumann, J. Kolar, Comprehensive design of a three-phase three-switch buck-type pwm rectifier. IEEE Trans. Power Electron. 22, 551–562 (2007)

    Article  Google Scholar 

  39. B. Guo, F. Wang, R. Burgos, E. Aeloiza, Control of three-phase buck-type rectifier in discontinuous current mode, in 2013 IEEE Energy Conversion Congress and Exposition (ECCE) (2013), pp. 4864–4871

    Google Scholar 

  40. J. Conde-Enriquez, J. Benitez-Read, J. Duran-Gomez, J. Pacheco-Sotelo, Three-phase six-pulse buck rectifier with high quality input waveforms, IEE Proceedings - Electric Power Applications (1999), vol. 146, pp. 637–645

    Google Scholar 

  41. J. Doval-Gandoy, C. Penalver, Dynamic and steady state analysis of a three phase buck rectifier. IEEE Trans. Power Electron. 15, 953–959 (2000)

    Article  Google Scholar 

  42. S.-B. Han, N.-S. Choi, C.-T. Rim, G.-H. Cho, Modeling and analysis of static and dynamic characteristics for buck-type three-phase pwm rectifier by circuit dq transformation. IEEE Trans. Power Electron. 13, 323–336 (1998)

    Google Scholar 

  43. Y. Nishida, T. Kondoh, M. Ishikawa, K. Yasui, Three-phase pwm-current-source type pfc rectifier (theory and practical evaluation of 12kw real product), in Proceedings of the Power Conversion Conference, 2002. PCC-Osaka 2002 (2002), vol. 3, pp. 1217–1222

    Google Scholar 

  44. A. Stupar, T. Friedli, J. Minibock, J.W. Kolar, Towards a 99 \(\%\) efficient three-phase buck-type pfc rectifier for 400-v dc distribution systems. IEEE Trans. Power Electron. 27, 1732–1744 (2012)

    Article  Google Scholar 

  45. T.B. Soeiro, T. Friedli, J.W. Kolar, Swiss rectifier; a novel three-phase buck-type pfc topology for electric vehicle battery charging, in 2012 Twenty-Seventh Annual IEEE Applied Power Electronics Conference and Exposition (APEC) (2012), pp. 2617–2624

    Google Scholar 

  46. T. Soeiro, T. Friedli, J.W. Kolar, Three-phase high power factor mains interface concepts for electric vehicle battery charging systems, in 2012 Twenty-Seventh Annual IEEE Applied Power Electronics Conference and Exposition (APEC) (2012), pp. 2603–2610

    Google Scholar 

  47. U. Borovi, Analysis and comparison of different active rectifier topologies for avionic specifications, Master’s thesis, Universidad Politcnica de Madrid, Spain, 2014

    Google Scholar 

  48. M. Baumann, T. Nussbaumer, J.W. Kolar, Comparative evaluation of modulation methods of a three-phase buck + boost pwm rectifier. part i: theoretical analysis. IET Power Electron. 1, 255–267 (2008)

    Article  Google Scholar 

  49. T. Nussbaumer, M. Baumann, J.W. Kolar, Comparative evaluation of modulation methods of a three-phase buck + boost pwm rectifier. part ii: experimental verification. IET Power Electronics 1, 268–274 (2008)

    Article  Google Scholar 

  50. J.W.Kolar, T. Nussbaumer, K. Mino, Design and comparative evaluation of three-phase buck+boost and boost+buck unity power factor pwm rectifier systems for supplying variable dc voltage link converters, in 25th International Conference on Power Electronics (PCIM) (2004)

    Google Scholar 

  51. S. Ratanapanachote, H.J. Cha, P. Enjeti, A digitally controlled switch mode power supply based on matrix converter, in 2004 IEEE 35th Annual Power Electronics Specialists Conference, 2004. PESC 04 (2004), vol. 3, pp. 2237–2243

    Google Scholar 

  52. J. Sandoval, S. Essakiappan, P. Enjeti, A bidirectional series resonant matrix converter topology for electric vehicle dc fast charging, in 2015 IEEE Applied Power Electronics Conference and Exposition (APEC) (2015), pp. 3109–3116

    Google Scholar 

  53. G.T. Chiang, K. Orikawa, Y. Ohnuma, J.I. Itoh, Improvement of output voltage with svm in three-phase ac to dc isolated matrix converter, in IECON 2013 - 39th Annual Conference of the IEEE Industrial Electronics Society (2013), pp. 4862–4867

    Google Scholar 

  54. P. Wheeler, J. Clare, L. Empringham, M. Apap, M. Bland, Matrix converters. Power Eng. J. 16, 273–282 (2002)

    Article  Google Scholar 

  55. P. Wheeler, J. Clare, L. Empringham, M. Apap, K. Bradley, C. Whitley, G. Towers, A matrix converter based permanent magnet motor drive for an aircraft actuation system, in IEEE International Electric Machines and Drives Conference, 2003. IEMDC’03 (2003), vol. 2, pp. 1295–1300

    Google Scholar 

  56. K. Basu, N. Mohan, A single-stage power electronic transformer for a three-phase pwm ac/ac drive with source-based commutation of leakage energy and common-mode voltage suppression. IEEE Trans. Ind. Electron. 61, 5881–5893 (2014)

    Article  Google Scholar 

  57. T. Friedli, J. Kolar, J. Rodriguez, P. Wheeler, Comparative evaluation of three-phase ac-ac matrix converter and voltage dc-link back-to-back converter systems. IEEE Trans. Ind. Electron. 59, 4487–4510 (2012)

    Article  Google Scholar 

  58. M. Aten, G. Towers, C. Whitley, P. Wheeler, J. Clare, K. Bradley, Reliability comparison of matrix and other converter topologies. IEEE Trans. Aerosp. Electron. Syst. 42, 867–875 (2006)

    Article  Google Scholar 

  59. W. Pearson, The more electric/all electric aircraft-a military fast jet perspective, in Proceedings of the IEE Colloquium on All Electric Aircraft (Digest No. 1998/260) (1998), pp. 5/1–5/7

    Google Scholar 

  60. C. Wan, C. Marotta, A. Zubyk, G. Tucker, C. Meadows, R. True, T. Schoemehl, R. Duggal, M. Kirshner, R. Kowalczyk et al., A 100 watt w-band mpm, in 2013 IEEE 14th International Vacuum Electronics Conference (IVEC) (IEEE, 2013), pp. 1–1

    Google Scholar 

  61. R. Duggal, A. Donald, T. Schoemehl, Technological evolution of the microwave power module (mpm), in IEEE International Vacuum Electronics Conference, 2009. IVEC ’09 (2009), pp. 353–354

    Google Scholar 

  62. C.R. Smith, C.M. Armstrong, J. Duthie, The microwave power module: a versatile rf building block for high-power transmitters, in Proceedings of the IEEE (1999), vol. 87, pp. 717–737

    Article  Google Scholar 

  63. C.D. Prasad, G. Baranidharan, K.B. Venkataraman, U.K. Revankar, Integration and evaluation of a mpm based transmitter on fighter aircraft, in 2011 IEEE International Vacuum Electronics Conference (IVEC) (2011), pp. 435–436

    Google Scholar 

  64. P. Sidharthan, K. Mirjith, A.J. Zabiulla, S. Kamath, Development of a fast switching modulator for an mpm, in 2011 IEEE International Vacuum Electronics Conference (IVEC) (2011), pp. 433–434

    Google Scholar 

  65. T. Ninnis, Microwave Power Modules (MPMs) Miniature Microwave Amplifiers for Radars. http://bbs.hwrf.com.cn/downebd/81825d1350949095-l3-mpm-radar.pdf (2005)

  66. A. Santoja, A. Barrado, C. Fernandez, M. Sanz, C. Raga, A. Lazaro, High voltage gain dc-dc converter for micro and nanosatellite electric thrusters, in 2013 Twenty-Eighth Annual IEEE Applied Power Electronics Conference and Exposition (APEC) (IEEE, 2013), pp. 2057–2063

    Google Scholar 

  67. T.B. Soeiro, J. Muhlethaler, J. Linner, P. Ranstad, J.W. Kolar, automated design of a high-power high-frequency lcc resonant converter for electrostatic precipitators. IEEE Trans. Ind. Electron. 60(11), 4805–4819 (2013)

    Article  Google Scholar 

  68. R. Casanueva, C. Brañas, F.J. Azcondo, F.J. Diaz, Teaching resonant converters: properties and applications for variable loads. IEEE Trans. Ind. Electron. 57(10), 3355–3363 (2010)

    Article  Google Scholar 

  69. J. Liu, L. Sheng, J. Shi, Z. Zhang, X. He, Design of high voltage, high power and high frequency transformer in lcc resonant converter, in Twenty-Fourth Annual IEEE Applied Power Electronics Conference and Exposition, 2009. APEC 2009 (IEEE, 2009), pp. 1034–1038

    Google Scholar 

  70. S. Gavin, M. Carpita, P. Ecoeur, H.-P. Biner, M. Paolone, E.T. Louokdom, A digitally controlled 125 kvdc, 30kw power supply with an lcc resonant converter working at variable dc-link voltage: full scale prototype test results (2014)

    Google Scholar 

  71. J.M. Cyr, K. Al-Haddad, L.A. Dessaint, M. Saad, V. Rajagopalan, Comparison of resonant converter topologies. Can. J. Electr. Comput. Eng. 20, 193–201 (1995)

    Article  Google Scholar 

  72. D.M. Divan, Design considerations for very high frequency resonant mode dc/dc converters, IEEE Transactions on Power Electronics (1987), vol. PE-2, pp. 45–54

    Article  Google Scholar 

  73. S. Iqbal, A three-phase symmetrical multistage voltage multiplier. IEEE Power Electron. Lett. 3(1), 30–33 (2005)

    Article  Google Scholar 

  74. S. Iqbal, A hybrid symmetrical voltage multiplier. IEEE Trans. Power Electron. 29(1), 6–12 (2014)

    Article  Google Scholar 

  75. Y. Zhao, X. Xiang, W. Li, X. He, C. Xia, Advanced symmetrical voltage quadrupler rectifiers for high step-up and high output-voltage converters. IEEE Trans. Power Electron. 28(4), 1622–1631 (2013)

    Article  Google Scholar 

  76. A. Lamantia, P.G. Maranesi, L. Radrizzani, Small-signal model of the cockcroft-walton voltage multiplier. IEEE Trans. Power Electron. 9(1), 18–25 (1994)

    Article  Google Scholar 

  77. N. Vishwanathan, V. Ramanarayanan, Input voltage modulated high voltage dc power supply topology for pulsed load applications, in IECON 02 [IEEE 2002 28th Annual Conference of the Industrial Electronics Society] (2002), vol. 1, pp. 389–394

    Google Scholar 

  78. B.S. Nathan, V. Ramanarayanan, Analysis, simulation and design of series resonant converter for high voltage applications, in Proceedings of IEEE International Conference on Industrial Technology 2000 (IEEE, 2000), vol. 1, pp. 688–693

    Google Scholar 

  79. I. Barbi, R. Gules, Isolated dc-dc converters with high-output voltage for twta telecommunication satellite applications. IEEE Trans. Power Electron. 18, 975–984 (2003)

    Article  Google Scholar 

  80. T. Mec, TWT Performance Fundamentals. http://www.teledyne-mec.com/products/technical_description.aspx

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Amit Kumar Singh .

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Singh, A.K. (2018). Introduction. In: Analysis and Design of Power Converter Topologies for Application in Future More Electric Aircraft. Springer Theses. Springer, Singapore. https://doi.org/10.1007/978-981-10-8213-9_1

Download citation

  • DOI: https://doi.org/10.1007/978-981-10-8213-9_1

  • Published:

  • Publisher Name: Springer, Singapore

  • Print ISBN: 978-981-10-8212-2

  • Online ISBN: 978-981-10-8213-9

  • eBook Packages: EnergyEnergy (R0)

Publish with us

Policies and ethics