Skip to main content

Evolution of Trichocyte Keratin Associated Proteins

  • Chapter
  • First Online:
The Hair Fibre: Proteins, Structure and Development

Part of the book series: Advances in Experimental Medicine and Biology ((AEMB,volume 1054))

Abstract

The major components of hair are keratins and keratin associated proteins (KRTAPs). KRTAPs form the interfilamentous matrix between intermediate filament bundles through extensive disulfide bond cross-linking with the numerous cysteine residues in hair keratins. A variable number of approximately100–180 genes compose the KRTAP gene family in mammals. KRTAP gene family members present a typical pattern of concerted evolution, and its evolutionary features are consistent with the evolution of mammalian hair. KRATP genes might be more important in determining the structure of cashmere fibers in domestic mammals like sheep and goats. KRTAP gene variants thus should provide information for improved wool by sheep and goat breeding.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 199.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Rogers, M. A., et al. (2006). Human hair keratin associated proteins (KAPs). International Review of Cytology, 251, 209–263.

    Article  CAS  PubMed  Google Scholar 

  2. Wu, D.-D., Irwin, D. M., & Zhang, Y.-P. (2008). Molecular evolution of the keratin associated protein gene family in mammals, role in the evolution of mammalian hair. BMC Evolutionary Biology, 8, 241.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  3. Khan, I., et al. (2014). Mammalian keratin associated proteins (KRTAPs) subgenomes: Disentangling hair diversity and adaptation to terrestrial and aquatic environments. BMC Genomics, 15, 779.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  4. Shimomura, Y., & Ito, M. (2015). Human hair keratin-associated proteins. Journal of Investigative Dermatology Symposium Proceedings, 10(3), 230–233.

    Article  Google Scholar 

  5. Niimura, Y., & Nei, M. (2003). Evolution of olfactory receptor genes in the human genome. Proceedings of the National Academy of Sciences of the United States of America, 100(21), 12235–12240.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  6. Niimura, Y., & Nei, M. (2005). Evolutionary dynamics of olfactory receptor genes in fishes and tetrapods. Proceedings of the National Academy of Sciences, 102(17), 6039–6044.

    Article  CAS  Google Scholar 

  7. Niimura, Y., & Nei, M. (2006). Evolutionary dynamics of olfactory and other chemosensory receptor genes in vertebrates. Journal of Human Genetics, 51(6), 505–517.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  8. Niimura, Y., & Nei, M. (2007). Extensive gains and losses of olfactory receptor genes in mammalian evolution. PLoS One, 2(8), e708.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  9. Grus, W. E., Shi, P., & Zhang, J. (2007). Largest vertebrate vomeronasal type 1 receptor (V1R) gene repertoire in the semi-aquatic platypus. Molecular Biology and Evolution, 24, 2153–2157.

    Article  PubMed  CAS  Google Scholar 

  10. Grus, W. E., et al. (2005). Dramatic variation of the vomeronasal pheromone receptor gene repertoire among five orders of placental and marsupial mammals. Proceedings of the National Academy of Sciences of the United States of America, 102(16), 5767–5772.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  11. Shi, P., & Zhang, J. (2007). Comparative genomic analysis identifies an evolutionary shift of vomeronasal receptor gene repertoires in the vertebrate transition from water to land. Genome Research, 17(2), 166–174.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  12. Shi, J., et al. (2003). Divergence of the genes on human chromosome 21 between human and other hominoids and variation of substitution rates among transcription units. Proceedings of the National Academy of Sciences, 100(14), 8331–8336.

    Article  CAS  Google Scholar 

  13. Shi, P., & Zhang, J. (2006). Contrasting modes of evolution between vertebrate sweet/umami receptor genes and bitter receptor genes. Molecular Biology and Evolution, 23(2), 292–300.

    Article  CAS  PubMed  Google Scholar 

  14. Fischer, A., et al. (2005). Evolution of bitter taste receptors in humans and apes. Molecular Biology and Evolution, 22(3), 432–436.

    Article  CAS  PubMed  Google Scholar 

  15. Parry, C. M., Erkner, A., & le Coutre, J. (2004). Divergence of T2R chemosensory receptor families in humans, bonobos, and chimpanzees. Proceedings of the National Academy of Sciences, 101(41), 14830–14834.

    Article  CAS  Google Scholar 

  16. Nei, M., & Rooney, A. P. (2005). Concerted and birth-and-death evolution of multigene families. Annual Review of Genetics, 39, 121–152.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  17. Maderson, P. F. A. (2003). Mammalian skin evolution: A reevaluation. Experimental Dermatology, 12(3), 233–236.

    Article  CAS  PubMed  Google Scholar 

  18. Schwartz, G. G., & Rosenblum, L. A. (1981). Allometry of primate hair density and the evolution of human hairlessness. American Journal of Physical Anthropology, 55, 9–12.

    Article  PubMed  CAS  Google Scholar 

  19. Marais, G. (2003). Biased gene conversion: Implications for genome and sex evolution. Trends in Genetics, 19(6), 330–338.

    Article  PubMed  CAS  Google Scholar 

  20. Galtier, N. (2003). Gene conversion drives GC content evolution in mammalian histones. Trends in Genetics, 19(2), 65–68.

    Article  PubMed  CAS  Google Scholar 

  21. Plowman, J. E., et al. (2009). Protein expression in orthocortical and paracortical cells of merino wool fibers. Journal of Agricultural and Food Chemistry, 57(6), 2174–2180.

    Article  PubMed  CAS  Google Scholar 

  22. Rogers, G. E. (2006). Biology of the wool follicle: An excursion into a unique tissue interaction system waiting to be re-discovered. Experimental Dermatology, 15(12), 931–949.

    Article  PubMed  Google Scholar 

  23. Gillespie, J. M. (1990). The proteins of hair and other hard α-keratins. In R. D. Goldman & P. M. Steinert (Eds.), Cellular and molecular biology of intermediate filaments (pp. 95–128). New York: Springer.

    Chapter  Google Scholar 

  24. Gillespie, J. M., & Darskus, R. L. (1971). Relation between the tyrosine content of various wools and their content of a class of proteins rich in tyrosine and glycine. Australian Journal of Biological Sciences, 24(4), 1189–1198.

    Article  PubMed  CAS  Google Scholar 

  25. Li, S. W., et al. (2009). Characterization of the structural and molecular defects in fibres and follicles of the merino felting lustre mutant. Experimental Dermatology, 18(2), 134–142.

    Article  PubMed  CAS  Google Scholar 

  26. Parsons, Y. M., Cooper, D. W., & Piper, L. R. (1994). Evidence of linkage between high-glycine-tyrosine keratin gene loci and wool fiber diameter in a merino half-sib family. Animal Genetics, 25(2), 105–108.

    Article  PubMed  CAS  Google Scholar 

  27. Zhou, H., et al. (2015). A 57-bp deletion in the ovine KAP6-1 gene affects wool fibre diameter. Journal of Animal Breeding and Genetics, 132(4), 301–307.

    Article  PubMed  CAS  Google Scholar 

  28. Fan, R., et al. (2013). Skin transcriptome profiles associated with coat color in sheep. BMC Genomics, 14, 389.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  29. Dong, Y., et al. (2013). Sequencing and automated whole-genome optical mapping of the genome of a domestic goat (Capra hircus). Nature Biotechnology, 31(2), 135–141.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Wu, DD., Irwin, D.M. (2018). Evolution of Trichocyte Keratin Associated Proteins. In: Plowman, J., Harland, D., Deb-Choudhury, S. (eds) The Hair Fibre: Proteins, Structure and Development. Advances in Experimental Medicine and Biology, vol 1054. Springer, Singapore. https://doi.org/10.1007/978-981-10-8195-8_5

Download citation

Publish with us

Policies and ethics