Abstract
Mammalian hair fibres can be structurally divided into three main components: a cuticle, cortex and sometimes a medulla. The cuticle consists of a thin layer of overlapping cells on the surface of the fibre, constituting around 10% of the total fibre weight. The cortex makes up the remaining 86–90% and is made up of axially aligned spindle-shaped cells of which three major types have been recognised in wool: ortho, meso and para. Cortical cells are packed full of macrofibril bundles, which are a composite of aligned intermediate filaments embedded in an amorphous matrix. The spacing and three-dimensional arrangement of the intermediate filaments vary with cell type. The medulla consists of a continuous or discontinuous column of horizontal spaces in the centre of the cortex that becomes more prevalent as the fibre diameter increases.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
References
Maderson, P. F. A. (2003). Mammalian skin evolution: A reevaluation. Experimental Dermatology, 12(3), 233–236.
Alibardi, L. (2006). Structural and immunocytochemical characterization of keratinization in vertebrate epidermis and epidermal derivatives. International Review of Cytology, 253, 177–259.
Eckhart, L., et al. (2008). Identification of reptilian genes encoding hair keratin-like proteins suggests a new scenario for the evolutionary origin of hair. Proceedings of the National Academy of Sciences of the United States of America, 105, 18419–18423.
Bradbury, J. H. (1973). The structure and chemistry of keratin fibers. Advances in Protein Chemistry, 27, 111–211.
Bradbury, J. H., & Leeder, J. D. (1970). Keratin fibres. IV. Structure of cuticle. Australian Journal of Biological Science, 23, 843–854.
Jones, L. N., & Rivett, D. E. (1997). The role of 18-methyleicosanoic acid in the structure and formation of mammalian hair fibres. Micron, 28(6), 469–485.
Swift, J. A. (1999). Human hair cuticle: Biologically conspired to the owner’s advantage. Journal of Cosmetic Science, 50(1), 23–47.
Jones, L. N. (2001). Hair structure anatomy and comparative anatomy. Clinics in Dermatology, 19(2), 95–103.
von Allwörden, K. (1916). Die eigenschaften der schafwolle und eine neue untersuchungsmethodezum nachweis geschädiger wolle auf chemischem wege. Angewandte Chemie, 29, 77–78.
Logan, R. I., et al. (1989). Analysis of the intercellular and membrane lipids of wool and other animal fibers. Textile Research Journal, 59, 109–113.
Negri, A. P., Cornell, H. J., & Rivett, D. E. (1991). The nature of covalently bound fatty acids in wool fibres. Australian Journal of Agricultural Research, 42(8), 1285–1292.
Negri, A. P., Cornell, H. J., & Rivett, D. E. (1993). A model for the surface of keratin fibers. Textile Research Journal, 63(2), 109–115.
Swift, J. A. (1997). Morphology and histochemistry of human hair. In P. Jollès, H. Zahn, & H. Höcker (Eds.), Formation and structure of human hair (pp. 149–175). Basel: Birkhäuser Verlag.
Bringans, S. D., et al. (2007). Characterization of the exocuticle a-layer proteins of wool. Experimental Dermatology, 16(11), 951–960.
Jones, L. N., Kaplin, I. J., & Legge, G. J. F. (1993). Distributions of protein moieties in α-keratin sections. Journal of Computer Assisted Microscopy, 5(1), 85–88.
Hallegot, P., & Corcuff, P. (1993). High resolution spatial maps of sulphur from human hair sections; an EELS study. Journal of Microscopy, 172, 131–136.
MacKinnon, P. J., Powell, B. C., & Rogers, G. E. (1990). Structure and expression of genes for a class of cysteine-rich proteins of the cuticle layers of differentiating wool and hair follicles. Journal of Cell Biology, 111(6), 2587–2600.
Jones, L. N., et al. (2010). Location of keratin-associated proteins in developing fiber cuticle cells using immunoelectron microscopy. International Journal of Trichology, 2(2), 89–95.
Langbein, L., et al. (1999). The catalog of human hair keratins. I. Expression of the nine type I members in the hair follicle. Journal of Biological Chemistry, 274(28), 19874–19884.
Langbein, L., et al. (2001). The catalog of human hair keratins. II. Expression of the six type II members in the hair follicle and the combined catalog of human type I and II keratins. Journal of Biological Chemistry, 276(37), 35123–35132.
Yu, Z., et al. (2009). Expression patterns of keratin intermediate filament and keratin associated protein genes in wool follicles. Differentiation, 77(3), 307–316.
Kulkarni, V. G., Robson, R. M., & Robson, A. (1971). Studies on the orthocortex and paracortex of Merino wool. Applied Polymer Symposium, 18, 127–146.
Rogers, G. E. (1959). Electron microscopy of wool. Journal of Ultrastructure Research, 2(3), 309–330.
Kaplin, I. J., & Whiteley, K. J. (1978). An electron microscope study of fibril: Matrix arrangements in high and low crimp wool fibres. Australian Journal of Biological Science, 31, 231–240.
Harland, D. P., Vernon, J. A., Woods, J. L., Nagase, S., Itou, T., Koike, K., Scobie, D. A., Grosvenor, A. J., Dyer, J. M., & Clerens, S. (2018). Intrinsic curvature in wool fibres is determined by the relative length of orthocortical and paracortical cells. The Journal of Experimental Biology, 221(6), jeb172312.
Horio, M., & Kondo, T. (1953). Crimping of wool fibers. Textile Research Journal, 23(6), 373–387.
Mercer, E. H. (1953). The heterogeneity of the keratin fibers. Textile Research Journal, 23(6), 388–397.
Swift, J. A. (1977). The histology of keratin fibers. In R. S. Asquith (Ed.), Chemistry of natural protein fibers (pp. 81–146). London: Wiley.
Jones, L. N., et al. (1990). Elemental distribution in keratin fibre/follicle sections. In Proceedings of the 8th International Wool Textile Research conference. Christchurch: Wool Research Organisation of New Zealand.
Caldwell, J. P., et al. (2005). The three-dimensional arrangement of intermediate filaments in Romney wool cortical cells. Journal of Structural Biology, 151(3), 298–305.
Orwin, D. F. G., Woods, J. L., & Ranford, S. L. (1984). Cortical cell types and their distribution in wool fibres. Australian Journal of Biological Science, 37, 237–255.
Bryson, W. G., et al. (2009). Cortical cell types and intermediate filament arrangements correlate with fiber curvature in Japanese human hair. Journal of Structural Biology, 166(1), 46–58.
Harland, D. P., et al. (2014). Three-dimensional architecture of macrofibrils in the human scalp hair cortex. Journal of Structural Biology, 185(3), 397–404.
Thomas, A., et al. (2012). Interspecies comparison of morphology, ultrastructure and proteome of mammalian keratin fibres of similar diameter. Journal of Agricultural and Food Chemistry, 60(10), 2434–2446.
Woods, J. L., et al. (2011). Morphology and ultrastructure of antler velvet hair and body hair from red deer (Cervus elaphus). Journal of Morphology, 272(1), 34–49.
De Cassia Comis-Wagner, R., et al. (2007). Electron microscopic observations on human hair medulla. Journal of Microscopy, 226, 54–63.
Harding, H. W., & Rogers, G. E. (1971). (γ-glutamyl)lysine cross-linkage in citrulline-containing protein fractions from hair. Biochemistry, 10, 624–630.
Rogers, G. E. (1989). Special biochemical features of the hair follicle. In G. E. Rogers, P. J. Reis, K. A. Ward, & R. C. Marshall (Eds.), The biology of wool and hair (pp. 69–85). London/New York: Chapman and Hall.
Swift, J. A., & Bews, B. (1974). The chemistry of human hair cuticle-II: The isolation and amino acid analysis of the cell membranes and A-layer. Journal of the Society of Cosmetic Chemistry, 25, 355–366.
Orwin, D. F. (1971). Cell differentiation in the lower outer sheath of the Romney wool follicle: A companion cell layer. Australian Journal of Biological Science, 24(5), 989–999.
Bryson, W. G., et al. (1995). Characterisation of proteins obtained from papain/dithiothreitol digestion of merino and romney wools. In Proceedings of the 9th International Wool Textile research conference, Biella, Italy.
Robbins, C. R. (2009). The cell membrane complex: Three related but different cellular cohesion components of mammalian hair fibers. Journal of the Society of Cosmetic Chemistry, 60(4), 437–465.
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2018 Springer Nature Singapore Pte Ltd.
About this chapter
Cite this chapter
Plowman, J.E., Harland, D.P. (2018). Fibre Ultrastructure. In: Plowman, J., Harland, D., Deb-Choudhury, S. (eds) The Hair Fibre: Proteins, Structure and Development. Advances in Experimental Medicine and Biology, vol 1054. Springer, Singapore. https://doi.org/10.1007/978-981-10-8195-8_1
Download citation
DOI: https://doi.org/10.1007/978-981-10-8195-8_1
Published:
Publisher Name: Springer, Singapore
Print ISBN: 978-981-10-8194-1
Online ISBN: 978-981-10-8195-8
eBook Packages: Biomedical and Life SciencesBiomedical and Life Sciences (R0)