Skip to main content

Typing Signature Classification Model for User Identity Verification

  • 311 Accesses

Part of the Advances in Intelligent Systems and Computing book series (AISC,volume 666)

Abstract

Typing pattern is a behavioral trait of user that is simple, less costly, and workable at any place having only computing device. In this paper, n-graph typing signature is built during user profiling based on keyboard usage pattern. The main aim of this paper is to increase inclusion of number of typing features (both temporal and global) during decision generation and to simplify the procedure of considering missing typing patterns (various monographs, digraphs, etc), which are not enrolled before. A modular classification model collection–storage–analysis (CSA) is designed to identify user. Typing signature becomes adaptive in nature through learning from environment. Module 1 is used for pattern acquisition and processing, and module 2 is used for storage, whereas module 3 is used for analysis. Final decision is generated on the basis of evaluated match score and enrolled global parameters. Proposed CSA model is capable to reduce space and time overhead in terms of dynamic pattern acquisition and storage without using any approximation method. A customized editor HCI is designed for physical key-based devices to build our own data set. Proposed CSA model can classify typing signature of valid and invalid user without incurring high overhead.

Keywords

  • Classification model
  • Typing signature
  • n-graph
  • Wildcard character
  • Identity verification

This is a preview of subscription content, access via your institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • DOI: 10.1007/978-981-10-8180-4_4
  • Chapter length: 25 pages
  • Instant PDF download
  • Readable on all devices
  • Own it forever
  • Exclusive offer for individuals only
  • Tax calculation will be finalised during checkout
eBook
USD   84.99
Price excludes VAT (USA)
  • ISBN: 978-981-10-8180-4
  • Instant PDF download
  • Readable on all devices
  • Own it forever
  • Exclusive offer for individuals only
  • Tax calculation will be finalised during checkout
Softcover Book
USD   109.99
Price excludes VAT (USA)
Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

References

  1. Wang, Y., Du, G-Y., Sun, F.-X.: A model for user authentication based on manner of keystroke and principal component analysis. In: Proceedings of International Conference on Machine Learning and Cybernetics, pp. 2788–2792 (2006)

    Google Scholar 

  2. Balagani, K.S., Phoha, V.V., Ray, A., Phoha, S.: On the discriminability of keystroke feature vectors used in fixed text keystroke authentication 32(7), 1070–1080 (2011)

    Google Scholar 

  3. Gunetti, D., Picardi, C., Karnan, M., Akila, M., Krishnaraj, N.: Biometric personal authentication using keystroke dynamics: a review. J. Appl. Soft Comput. 11(2), 1515–1573 (2011). (Elsevier)

    Google Scholar 

  4. Gunetti, D., Picardi, C.: Keystroke analysis of free text. ACM Trans. Inf. Syst. Secur. 8(3), 312–347 (2005)

    CrossRef  Google Scholar 

  5. Ahmed, A., Traore, I.: Biometric recognition based on free-text keystroke dynamics. IEEE Trans. Cybern. 44(4), 458–472 (2014)

    CrossRef  Google Scholar 

  6. Bhattasali, T., Panasiuk, P., Saeed, K., Chaki, N., Chaki, R.: Modular logic of authentication using dynamic keystroke pattern analysis. ICNAAM, AIP Publ. Am. Inst. Phys. 1738, 180012 (2016)

    Google Scholar 

  7. Bhattasali, T., Saeed, K.: Two factor remote authentication in healthcare. In Proceedings of IEEE International Conference on Advances in Computing, Comunications and Informatics, pp. 380–381 (2014)

    Google Scholar 

  8. Giroux, R.S., Wachowiak, M.P.: Keystroke based authentication by key press intervals as a complementary behavioral biometric systems. In: Proceedings of IEEE International Conference on Man and Cybernetics, pp. 80–85 (2009)

    Google Scholar 

  9. Syed, Z., Banerjee, S., Leveraging, B.C.: Variations in event sequences in keystroke dynamics authentication systems. In: Proceedings of IEEE International Symposium on High-Assurance Systems Engineering, pp. 9–11 (2014)

    Google Scholar 

  10. Shimshon, T., Moskovitch, R., Rokach, L., Elovici, Y.: Clustering Di-graphs for continuously verifying users according to their typing patterns. In: Proceedings of IEEE Convention of Electrical and Electronics Engineers in Israel, pp. 445–449 (2010)

    Google Scholar 

  11. Karnan, M., Krishnaraj, N.: Bio password—keystroke dynamic approach to secure mobile devices. In: Proceedings of IEEE International Conference on Computational Intelligence and Computing Research, pp. 1–4 (2010)

    Google Scholar 

  12. Hu, J., Gingrich, D., Sentosa, A.: A K-Nearest neighbor approach for user authentication through biometric keystroke dynamics. In: Proceedings of IEEE International Conference on Communications, pp. 1551–1510 (2008)

    Google Scholar 

  13. Killourhy, K.S., Maxion, R.A.: Comparing anomaly-detection algorithms for keystroke dynamics. In: Proceedings of IEEE/IFIP International Conference Dependable Systems and Networks, pp. 125–134 (2009)

    Google Scholar 

  14. Araujo, L.C.F., Sucupira, L.H.R., Lizarraga, M.G., Ling, L.L., YabuUti, J.B.T.: User authentication through typing biometrics features. IEEE Trans. Signal Process. 53(2), 851–855 (2005)

    MathSciNet  CrossRef  Google Scholar 

  15. Killourhy, K.S., Kevin, S., Maxion, R.A., Roy, A.: Free versus transcribed text for keystroke dynamics evaluations. In: Proceedings of Workshop: Learning from Authoritative Security Experiment Results, pp. 1–8 (2012)

    Google Scholar 

  16. Bhattasali, T., Saeed, K., Chaki, N., Chaki, R.: Bio-authentication for layered remote health monitor framework. J. Med. Inf. Technol. 23(2014), 131–140 (2014)

    Google Scholar 

  17. Jain, K., Ross, A., Pankanti, S.: Biometrics: a tool for information security. IEEE Trans. Inf. Forensics Secur. 1(2), 125–143 (2001)

    CrossRef  Google Scholar 

  18. Kao, B., Lee, S.D., Lee, P.K.F., Cheung, D.W., Ho, W.S.: Clustering uncertain data using voronoi diagrams and r-tree index. IEEE Trans. Knowl. Data Eng. 22(9), 1219–1233 (2010)

    CrossRef  Google Scholar 

  19. Xie, Q.Y., Cheng, Y.: K-Centers min-max clustering algorithm over heterogeneous wireless sensor networks. In: Proceedings of IEEE Wireless Telecommunications Symposium, pp. 1–6 (2013)

    Google Scholar 

  20. Giot, R., El-Abed, M., Hemery, B., Rosenberger, C.: Unconstrained keystroke dynamics authentication with shared secret. Elsevier Comput. Secur. 30(1–7), 427–445 (2011)

    CrossRef  Google Scholar 

  21. Upmanyu, M., Namboodiri, A.M., Srinathan, K., Jawahar, C.V.: Blind authentication: a secure crypto-biometric verification protocol. IEEE Trans. Inf. Forensics Secur. 5(2), 255–218 (2010)

    CrossRef  Google Scholar 

  22. Montalvao, J., Freirem, E.O., Bezerra, M.A., Garcia, R.: Empirical keystroke analysis in passwords. In: Proceedings of ISSNIP/IEEE Biosignals and Biorobotics Conference: Bio signals and Robotics for Better and Safer Living (BRC), pp. 1–6 (2014)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Tapalina Bhattasali .

Editor information

Editors and Affiliations

Appendix

Appendix

HCI User Interface

HCI Editor for Static Pattern Collection

HCI Editor for Dynamic Pattern Collection

Rights and permissions

Reprints and Permissions

Copyright information

© 2018 Springer Nature Singapore Pte Ltd.

About this chapter

Verify currency and authenticity via CrossMark

Cite this chapter

Bhattasali, T., Chaki, R., Saeed, K., Chaki, N. (2018). Typing Signature Classification Model for User Identity Verification. In: Chaki, R., Cortesi, A., Saeed, K., Chaki, N. (eds) Advanced Computing and Systems for Security. Advances in Intelligent Systems and Computing, vol 666. Springer, Singapore. https://doi.org/10.1007/978-981-10-8180-4_4

Download citation

  • DOI: https://doi.org/10.1007/978-981-10-8180-4_4

  • Published:

  • Publisher Name: Springer, Singapore

  • Print ISBN: 978-981-10-8179-8

  • Online ISBN: 978-981-10-8180-4

  • eBook Packages: EngineeringEngineering (R0)