Skip to main content

Clinical Development of Genomic Medicine in Pulmonary Diseases: Are Genetic Factors Enough to Determine the Phenotype and Inheritance of Pulmonary Diseases?

  • Chapter
  • First Online:
  • 367 Accesses

Abstract

Many pulmonary disease genotypes have been identified in genome-wide association studies using microarray technology. These genetic variants are relatively common but generally explain little about the heritability of disease, a phenomenon known as “missing heritability.” This suggests that a genomic approach alone might not be enough to determine the phenotype and heritability of pulmonary diseases. Since the airway is continuously exposed to various environmental factors, the gene–environment interaction is extremely important in the pathogenesis of pulmonary diseases. However, the mechanisms by which environmental factors contribute to the heritability and pathological development of pulmonary diseases remain unknown. Recently, it has been reported that not only the genome but also the epigenome and microbiome are involved in the determination of disease susceptibility and phenotype. Recent advances in analytical techniques have yielded enormous quantities of diverse types of individual biological information, including genomic, epigenomic, transcriptomic, proteomic, metabolomic, and microbiomic data. Using this vast array of biometric information, new pulmonary disease phenotypes will be identified and could be used to develop personalized medicines for patients with pulmonary diseases in the future. This review provides an overview of the current knowledge of the genomic medicine for better understanding of the heritability of pulmonary disease.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   179.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. Collins FS. Positional cloning: let’s not call it reverse anymore. Nat Genet. 1992;1:3–6.

    Article  CAS  PubMed  Google Scholar 

  2. Campbell JD, Spira A, Lenburg ME. Applying gene expression microarrays to pulmonary disease. Respirology. 2011;16:407–18.

    Article  PubMed  Google Scholar 

  3. International Human Genome Sequencing C. Finishing the euchromatic sequence of the human genome. Nature. 2004;431:931–45.

    Article  CAS  Google Scholar 

  4. McCarthy MI, Abecasis GR, Cardon LR, et al. Genome-wide association studies for complex traits: consensus, uncertainty and challenges. Nat Rev Genet. 2008;9:356–69.

    Article  CAS  PubMed  Google Scholar 

  5. Manolio TA, Collins FS, Cox NJ, et al. Finding the missing heritability of complex diseases. Nature. 2009;461:747–53.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Maher B. Personal genomes: the case of the missing heritability. Nature. 2008;456:18–21.

    Article  CAS  PubMed  Google Scholar 

  7. Yang IV, Schwartz DA. The next generation of complex lung genetic studies. Am J Respir Crit Care Med. 2012;186:1087–94.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Radder JE, Zhang Y, Gregory AD, et al. Extreme trait whole genome sequencing identifies PTPRO as a novel candidate gene in emphysema with severe airflow obstruction. Am J Respir Crit Care Med. 2017;196(2):159.

    Article  PubMed  PubMed Central  Google Scholar 

  9. Seibold MA, Schwartz DA. The lung: the natural boundary between nature and nurture. Annu Rev Physiol. 2011;73:457–78.

    Article  CAS  PubMed  Google Scholar 

  10. Genomes Project C, Abecasis GR, Altshuler D, et al. A map of human genome variation from population-scale sequencing. Nature. 2010;467:1061–73.

    Article  CAS  Google Scholar 

  11. Petrovski S, Todd JL, Durheim MT, et al. An exome sequencing study to assess the role of rare genetic variation in pulmonary fibrosis. Am J Respir Crit Care Med. 2017;196(1):82.

    Article  PubMed  PubMed Central  Google Scholar 

  12. Jamal-Hanjani M, Wilson GA, McGranahan N, et al. Tracking the evolution of non-small-cell lung cancer. N Engl J Med. 2017;376(22):2109.

    Article  CAS  PubMed  Google Scholar 

  13. Fraga MF, Ballestar E, Paz MF, et al. Epigenetic differences arise during the lifetime of monozygotic twins. Proc Natl Acad Sci U S A. 2005;102:10604–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Thomsen SF, Duffy DL, Kyvik KO, Backer V. Genetic influence on the age at onset of asthma: a twin study. J Allergy Clin Immunol. 2010;126:626–30.

    Article  PubMed  Google Scholar 

  15. DeMeo DL, Campbell EJ, Brantly ML, et al. Heritability of lung function in severe alpha-1 antitrypsin deficiency. Hum Hered. 2009;67:38–45.

    Article  CAS  PubMed  Google Scholar 

  16. Sirlin JL, Waddington CH. Cell sites of protein synthesis in the early chick embryo, as indicated by autoradiographs. Exp Cell Res. 1956;11:197–205.

    Article  CAS  PubMed  Google Scholar 

  17. Holliday R. The inheritance of epigenetic defects. Science. 1987;238:163–70.

    Article  CAS  PubMed  Google Scholar 

  18. Goldberg AD, Allis CD, Bernstein E. Epigenetics: a landscape takes shape. Cell. 2007;128:635–8.

    Article  CAS  PubMed  Google Scholar 

  19. Consortium EP. An integrated encyclopedia of DNA elements in the human genome. Nature. 2012;489:57–74.

    Article  CAS  Google Scholar 

  20. Cook DG, Strachan DP. Health effects of passive smoking. 3. Parental smoking and prevalence of respiratory symptoms and asthma in school age children. Thorax. 1997;52:1081–94.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Joubert BR, Haberg SE, Nilsen RM, et al. 450K epigenome-wide scan identifies differential DNA methylation in newborns related to maternal smoking during pregnancy. Environ Health Perspect. 2012;120:1425–31.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Breton CV, Byun HM, Wenten M, Pan F, Yang A, Gilliland FD. Prenatal tobacco smoke exposure affects global and gene-specific DNA methylation. Am J Respir Crit Care Med. 2009;180:462–7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Tang WY, Levin L, Talaska G, et al. Maternal exposure to polycyclic aromatic hydrocarbons and 5′-CpG methylation of interferon-gamma in cord white blood cells. Environ Health Perspect. 2012;120:1195–200.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Perera F, Tang WY, Herbstman J, et al. Relation of DNA methylation of 5′-CpG island of ACSL3 to transplacental exposure to airborne polycyclic aromatic hydrocarbons and childhood asthma. PLoS One. 2009;4:e4488.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Chen W, Boutaoui N, Brehm JM, et al. ADCYAP1R1 and asthma in Puerto Rican children. Am J Respir Crit Care Med. 2013;187:584–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Michels KB, Binder AM, Dedeurwaerder S, et al. Recommendations for the design and analysis of epigenome-wide association studies. Nat Methods. 2013;10:949–55.

    Article  CAS  PubMed  Google Scholar 

  27. Yang IV, Pedersen BS, Liu A, et al. DNA methylation and childhood asthma in the inner city. J Allergy Clin Immunol. 2015;136:69–80.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Liang L, Willis-Owen SA, Laprise C, et al. An epigenome-wide association study of total serum immunoglobulin E concentration. Nature. 2015;520:670–4.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Yang IV, Pedersen BS, Rabinovich E, et al. Relationship of DNA methylation and gene expression in idiopathic pulmonary fibrosis. Am J Respir Crit Care Med. 2014;190:1263–72.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Rakyan VK, Down TA, Balding DJ, Beck S. Epigenome-wide association studies for common human diseases. Nat Rev Genet. 2011;12:529–41.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Ito K, Caramori G, Lim S, et al. Expression and activity of histone deacetylases in human asthmatic airways. Am J Respir Crit Care Med. 2002;166:392–6.

    Article  PubMed  Google Scholar 

  32. Ito K, Ito M, Elliott WM, et al. Decreased histone deacetylase activity in chronic obstructive pulmonary disease. N Engl J Med. 2005;352:1967–76.

    Article  CAS  PubMed  Google Scholar 

  33. Ito K, Lim S, Caramori G, et al. A molecular mechanism of action of theophylline: induction of histone deacetylase activity to decrease inflammatory gene expression. Proc Natl Acad Sci U S A. 2002;99:8921–6.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Carninci P, Kasukawa T, Katayama S, et al. The transcriptional landscape of the mammalian genome. Science. 2005;309:1559–63.

    Article  CAS  PubMed  Google Scholar 

  35. Birney E, Stamatoyannopoulos JA, Dutta A, et al. Identification and analysis of functional elements in 1% of the human genome by the ENCODE pilot project. Nature. 2007;447:799–816.

    Article  CAS  PubMed  Google Scholar 

  36. Comer BS, Ba M, Singer CA, Gerthoffer WT. Epigenetic targets for novel therapies of lung diseases. Pharmacol Ther. 2015;147:91–110.

    Article  CAS  PubMed  Google Scholar 

  37. Blaser MJ, Falkow S. What are the consequences of the disappearing human microbiota? Nat Rev Microbiol. 2009;7:887–94.

    Article  CAS  PubMed  Google Scholar 

  38. Dickson RP, Martinez FJ, Huffnagle GB. The role of the microbiome in exacerbations of chronic lung diseases. Lancet. 2014;384:691–702.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Hilty M, Burke C, Pedro H, et al. Disordered microbial communities in asthmatic airways. PLoS One. 2010;5:e8578.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Huang YJ, Nelson CE, Brodie EL, et al. Airway microbiota and bronchial hyperresponsiveness in patients with suboptimally controlled asthma. J Allergy Clin Immunol. 2011;127:372–81. e371–373.

    Article  PubMed  Google Scholar 

  41. Huang YJ, Nariya S, Harris JM, et al. The airway microbiome in patients with severe asthma: associations with disease features and severity. J Allergy Clin Immunol. 2015;136:874–84.

    Article  PubMed  PubMed Central  Google Scholar 

  42. Sze MA, Dimitriu PA, Suzuki M, et al. Host response to the lung microbiome in chronic obstructive pulmonary disease. Am J Respir Crit Care Med. 2015;192:438–45.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Molyneaux PL, Mallia P, Cox MJ, et al. Outgrowth of the bacterial airway microbiome after rhinovirus exacerbation of chronic obstructive pulmonary disease. Am J Respir Crit Care Med. 2013;188:1224–31.

    Article  PubMed  PubMed Central  Google Scholar 

  44. Faner R, Sibila O, Agusti A, et al. The microbiome in respiratory medicine: current challenges and future perspectives. Eur Respir J. 2017;49(4)

    Article  PubMed  Google Scholar 

  45. Han MK, Zhou Y, Murray S, et al. Lung microbiome and disease progression in idiopathic pulmonary fibrosis: an analysis of the COMET study. Lancet Respir Med. 2014;2:548–56.

    Article  PubMed  PubMed Central  Google Scholar 

  46. Teo SM, Mok D, Pham K, et al. The infant nasopharyngeal microbiome impacts severity of lower respiratory infection and risk of asthma development. Cell Host Microbe. 2015;17:704–15.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Biesbroek G, Tsivtsivadze E, Sanders EA, et al. Early respiratory microbiota composition determines bacterial succession patterns and respiratory health in children. Am J Respir Crit Care Med. 2014;190:1283–92.

    Article  PubMed  Google Scholar 

  48. Duijts L, Jaddoe VW, Hofman A, Moll HA. Prolonged and exclusive breastfeeding reduces the risk of infectious diseases in infancy. Pediatrics. 2010;126:e18–25.

    Article  PubMed  Google Scholar 

  49. Lotvall J, Akdis CA, Bacharier LB, et al. Asthma endotypes: a new approach to classification of disease entities within the asthma syndrome. J Allergy Clin Immunol. 2011;127:355–60.

    Article  PubMed  Google Scholar 

  50. Agusti A, Anto JM, Auffray C, et al. Personalized respiratory medicine: exploring the horizon, addressing the issues. Summary of a BRN-AJRCCM workshop held in Barcelona on June 12, 2014. Am J Respir Crit Care Med. 2015;191:391–401.

    Article  PubMed  PubMed Central  Google Scholar 

  51. Siroux V, Agier L, Slama R. The exposome concept: a challenge and a potential driver for environmental health research. Eur Respir Rev. 2016;25:124–9.

    Article  PubMed  Google Scholar 

  52. Hirsch FR, Scagliotti GV, Mulshine JL, et al. Lung cancer: current therapies and new targeted treatments. Lancet. 2017;389:299–311.

    Article  CAS  PubMed  Google Scholar 

  53. Wang L, McLeod HL, Weinshilboum RM. Genomics and drug response. N Engl J Med. 2011;364:1144–53.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Shuichiro Maruoka .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Hikichi, M., Maruoka, S., Hashimoto, S. (2018). Clinical Development of Genomic Medicine in Pulmonary Diseases: Are Genetic Factors Enough to Determine the Phenotype and Inheritance of Pulmonary Diseases?. In: Kaneko, T. (eds) Clinical Relevance of Genetic Factors in Pulmonary Diseases. Respiratory Disease Series: Diagnostic Tools and Disease Managements. Springer, Singapore. https://doi.org/10.1007/978-981-10-8144-6_1

Download citation

  • DOI: https://doi.org/10.1007/978-981-10-8144-6_1

  • Published:

  • Publisher Name: Springer, Singapore

  • Print ISBN: 978-981-10-8143-9

  • Online ISBN: 978-981-10-8144-6

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics