• Sheng-hong ChenEmail author
Part of the Springer Tracts in Civil Engineering book series (SPRTRCIENG)


This chapter describes the connotation and denotation of computational geomechanics (CG), a sun-branch of computational methods or mechanics (CM) which is, in turn, the branch of modern mathematical modeling. The history of the CM is logically unfolded following the evolution of human civilization, and the state-of-the-art is examined with special reference to those who are most widely or potentially exercised in hydraulic engineering. This introductory chapter is concluded with comments and suggestions on the healthy development and successful application of the CG for hydraulic structures.


  1. Aaboe A. The culture of Babylonia: Babylonian mathematics, astrology, and astronomy. In: Boardman J, Edwards IES, Hammond NGL, Sollberger E, Walker CBF, editors. The Assyrian and Babylonian empires and other states of the near east, from the eighth to the sixth centuries BC. 2nd ed. Cambridge: Cambridge University Press; 2008. p. 276–92.Google Scholar
  2. Adeli H. Neural networks in civil engineering: 1989–2000. Comput Aided Civ Infrastruct Eng. 2001;16(2):126–42.CrossRefGoogle Scholar
  3. Al-Suhaili RHS, Ali AAM, Behaya SAK. Artificial neural network modeling for dynamic analysis of a dam-reservoir-foundation system. Int J Eng Res Appl. 2014;4(1):121–43.Google Scholar
  4. Amadei B, editor. Proceedings of the third international conferences on analysis of discontinuous deformation—from theory to practice (ICADD-III). Vail, Colorado: American Rock Mechanics Association; 1999.Google Scholar
  5. Anandarajah A. Computational methods in elasticity and plasticity: solids and porous media. New York: Springer; 2010.zbMATHCrossRefGoogle Scholar
  6. Anderson JD Jr. Computational fluid dynamics—the basics with applications. New York: McGraw-Hill; 1995.Google Scholar
  7. Andersson J, Dverstop B. Conditional simulations of fluid flow in three-dimensional networks of discrete fractures. Water Resour Res. 1987;23(10):1876–86.CrossRefGoogle Scholar
  8. Ardito R, Maier G, Massaiongo G. Diagnostic analysis of concrete dams based on seasonal hydrostatic loading. Eng Struct. 2008;30(11):3176–85.CrossRefGoogle Scholar
  9. Argyris JH. Recent advances of matrix methods of structural analysis in aeronautical science, vol. 4. London: Pergamon Press; 1963.Google Scholar
  10. Attewell PB, Woodman JP. Predicting the dynamics of ground settlement and its derivatives caused by tunneling in soil. Ground Eng. 1982;15(8):9–36.Google Scholar
  11. Babuška I, Rheinboldt WC. A-posteriori error estimates for the finite element method. Int J Numer Methods Eng. 1978;12(10):1597–615.zbMATHCrossRefGoogle Scholar
  12. Babuška I, Szabó BA. On the rates of convergence of the finite element method. Int J Numer Methods Eng. 1982;18(3):323–41.MathSciNetzbMATHCrossRefGoogle Scholar
  13. Babuška I, Szabó BA, Katz IN. The p-version of the finite element method. SIAM J Numer Anal. 1981;18(3):515–45.MathSciNetzbMATHCrossRefGoogle Scholar
  14. Barbosa R, Ghaboussi J. Discrete finite element method for multiple deformable bodies. Finite Elem Anal Des. 1990;7(2):145–58.CrossRefGoogle Scholar
  15. Barbosa R, Ghaboussi J. Discrete finite element method. Eng Computations. 1992;9(2):253–66.CrossRefGoogle Scholar
  16. Barenblatt GI, Zheltov LP, Kochina IN. Basic concepts in the theory of seepage of homogenous liquids in fissured rocks. J Appl Math Mech. 1960;24(5):1286–303.zbMATHCrossRefGoogle Scholar
  17. Basheer IA. Stress-strain behavior of geomaterials in loading reversal simulated by time-delay neural networks. J Mater Civ Eng. 2002;14(3):270–3.CrossRefGoogle Scholar
  18. Bear J, Tsang CF, de Marsily G. Flow and contaminant transport in fractured rock. San Diego: Academic Press; 1993.Google Scholar
  19. Beer G. Finite element, boundary element and coupled analysis of unbounded problems in elastostatics. Int J Numer Methods Eng. 1983;19(4):567–80.zbMATHCrossRefGoogle Scholar
  20. Beer G, Pousen A. Efficient numerical modelling of faulted rock using the boundary element method. Int J Rock Mech Min Sci. 1995a;32(3):117A.Google Scholar
  21. Beer G, Pousen A. Rock joints-BEM computations. In: Sevaldurai APS, Boulon MJ, editors. Mechanics of geomaterial interfaces. Amsterdam: Elsevier Science Publisher; 1995b. p. 343–73.CrossRefGoogle Scholar
  22. Beer G, Watson JO. Introduction to finite boundary element method for engineers. New York: Wiley; 1992.zbMATHGoogle Scholar
  23. Bell JM. General slope stability analysis. J Soil Mech Found Div ASCE. 1968;94(SM6):1253–70.Google Scholar
  24. Belytschko T, Black T. Elastic crack growth in finite elements with minimal re-meshing. Int J Numer Methods Eng. 1999;45(5):601–20.zbMATHCrossRefGoogle Scholar
  25. Belytschko T, Chen JS. Meshfree and particle methods. Hoboken: Wiley; 2007.Google Scholar
  26. Belytschko T, Gracie R, Ventura G. A review of extended/generalized finite element methods for material modeling. Model Simul Mater Sci Eng. 2009;17(4) (featured article).CrossRefGoogle Scholar
  27. Belytschko T, Krongauz Y, Organ D, Fleming M, Krysl P. Meshless methods: an overview and recent developments. Comput Methods Appl Mech Eng. 1996;139(1–4):3–47.zbMATHCrossRefGoogle Scholar
  28. Belytschko T, Organ D, Gerlach C. Element-free Galerkin methods for dynamic fracture in concrete. Comput Methods Appl Mech Eng. 2000;187(3–4):385–99.zbMATHCrossRefGoogle Scholar
  29. Belytschko T, Moës N, Usui S, Parimi C. Arbitrary discontinuities in finite elements. Int J Numer Methods Eng. 2001;50(4):993–1013.zbMATHCrossRefGoogle Scholar
  30. Birgisson B, Crouch SL. Elastodynamic boundary element method for piecewise homogeneous media. Int J Numer Methods Eng. 1998;42(6):1045–69.MathSciNetzbMATHCrossRefGoogle Scholar
  31. Blacker TD, Stephenson MS. Paving: a new approach to automated quadrilateral mesh generation. Int J Numer Methods Eng. 1991;32(4):811–47.zbMATHCrossRefGoogle Scholar
  32. Bobet A, Fakhimi A, Johnson S, Morris J, Tonon F, Ronald Yeung M. Numerical models in discontinuous media: review of advances for rock mechanics applications. J Geotech Geoenviron Eng ASCE. 2009;135(11):1547–61.CrossRefGoogle Scholar
  33. Blacker TD, Stephenson MB, Mitchiner JL, Phillips LR, Lin YT. Automated quadrilateral mesh generation: a knowledge system approach. ASME paper, 88-WA/CIE-4; 1988.Google Scholar
  34. Bonnet M, Maier G, Polizzotto C. Symmetric Galerkin boundary element methods. Appl Mech Rev. 1998;51(11):669–704.CrossRefGoogle Scholar
  35. Boyer CB. A history of mathematics. 2nd ed. New York: Wiley; 1991.Google Scholar
  36. Boyle WJ, Vogt TJ. Rock block analysis at Mount Rushmore National Memorial. In: Myer LR, Cook NGW, Goodman RE, Tsang CF, editors. Fractured and jointed rock masses. Rotterdam: AA Balkema; 1995. p. 717–23.Google Scholar
  37. Brady BHG, Bray JW. The boundary element method for determining stress and displacements around long openings in a triaxial stress field. Int J Rock Mech Min Sci Geomech Abstr. 1978;15(1):21–8.CrossRefGoogle Scholar
  38. Brady BHG, Wassyng A. A coupled finite element-boundary element method of stress analysis. Int J Rock Mech Min Sci Geomech Abstr. 1981;18(6):475–85.CrossRefGoogle Scholar
  39. Brebbia CA, editor. Topics in boundary element research. Vol. 4: Applications in geomechanics. Berlin: Springer; 1987.Google Scholar
  40. Brebbia CA, Telles JCF, Wrobel LC. Boundary element techniques: theory & applications in engineering. Berlin: Springer; 1984.zbMATHCrossRefGoogle Scholar
  41. Buczkowski R, Kleiber M. Elasto-plastic interface model for 3D-frictional orthotropic contact problems. Int J Numer Methods Eng. 1997;40(4):599–619.zbMATHCrossRefGoogle Scholar
  42. Burman BC. A numerical approach to the mechanics of discontinua. Ph.D. thesis. Australia: James Cook University of North Queensland; 1971.Google Scholar
  43. Byrne RJ. Physical and numerical model in rock and soil-slope stability. Ph.D. thesis. Australia: James Cook University of North Queensland; 1974.Google Scholar
  44. Cacas MC, Ledoux B, de Marsily G, Tillie B, Barbreau A, Durand E, Feuga B, Peaudecerf P. Modeling fracture flow with a stochastic discrete fracture network: calibration and validation, 1. The flow model. Water Resour Res. 1990;26(3):479–89.Google Scholar
  45. Cao XH, Chen SF, Chen SH. Generation of tetrahedral meshes in 3-D domains by advancing front method. Eng J Wuhan Univ. 1998;31(1):16–20 (in Chinese).Google Scholar
  46. Capecchi D. History of virtual work laws—a history of mechanics prospective. Milan: Springer; 2012.CrossRefGoogle Scholar
  47. Cerrolaza M, Garcia R. Boundary elements and damage mechanics to analyze excavations in rock mass. Eng Anal Bound Elem. 1997;20(1):1–16.CrossRefGoogle Scholar
  48. Chan HC, Einstein HH. Approach to complete limit equilibrium analysis for rock wedges—the method of “artificial supports”. Rock Mech. 1981;14(2):59–86.CrossRefGoogle Scholar
  49. Chan SK, Tuba IS, Wilson WK. On the finite element method in linear fracture mechanics. Eng Fract Mech. 1970;2(1):1–17.CrossRefGoogle Scholar
  50. Chang QT. Nonlinear dynamic discontinuous deformation analysis with finite element meshed block systems. Ph.D. thesis. Berkeley: University of California; 1994.Google Scholar
  51. Chappel BA. The mechanics of blocky material. Ph.D. thesis. Canberra: Australia National University; 1972.Google Scholar
  52. Chen SH. The stability of a rock wedge in the slope. M.Sc. thesis. Wuhan: WUHEE; 1984 (in Chinese).Google Scholar
  53. Chen SH. The elasto-plastic and elasto-viscoplastic analysis of the discontinuous rock masses. Ph.D. thesis. Wuhan: WUHEE; 1987 (in Chinese).Google Scholar
  54. Chen SH. Numerical analysis and model test of rock wedge in slope. In: Pasamehmetoglu AG, et al., editors. Proceedings of the international symposium on assessment and prevention of failure phenomena in rock engineering. Rotterdam: AA Balkema; 1993a. p. 425–9.Google Scholar
  55. Chen SH. Analysis of reinforced rock foundation using elastic-viscoplastic block theory. In: Ribeiro e Sousa L, Grossmann NF, editors. ISRM international symposium-EUROCK 93. Rotterdam: AA Balkema; 1993b. p. 45–51.Google Scholar
  56. Chen SH. Hydraulic structures. Berlin: Springer; 2015.CrossRefGoogle Scholar
  57. Chen SH, Egger P. Elasto-viscoplastic distinct modeling of bolt in jointed rock masses. In: Yuan JX, editor. Proceedings of computer method and advances in geomechanics, vol. 3. Rotterdam: AA Balkema; 1997. p. 1985–90.Google Scholar
  58. Chen SH, Egger P. Three dimensional elasto-viscoplastic finite element analysis of reinforced rock masses and its application. Int J Numer Anal Methods Geomech. 1999;23(1):61–78.zbMATHCrossRefGoogle Scholar
  59. Chen SH, Feng XM. Composite element model for rock mass seepage flow. J Hydrodyn (Ser. B). 2006;18(2):219–24.Google Scholar
  60. Chen SH, Shahrour I. Composite element method for the bolted discontinuous rock masses and its application. Int J Rock Mech Min Sci. 2008;45(3):384–96.CrossRefGoogle Scholar
  61. Chen SH, Shen BK, Huang MH. Stochastic elastic-viscoplastic analysis for discontinuous rock masses. Int J Numer Methods Eng. 1994;37(14):2429–44.zbMATHCrossRefGoogle Scholar
  62. Chen SH, Wang JS, Zhang JL. Adaptive elasto-viscoplastic FEM analysis for hydraufic structures. J Hydraulic Eng. 1996;27(2):68–75 (in Chinese).Google Scholar
  63. Chen G, Ohnishi Y, Ito T. Development of high-order manifold method. Int J Numer Methods Eng. 1998;43(4):685–712.zbMATHCrossRefGoogle Scholar
  64. Chen SH, Chen SF, Cao XH. Three dimensional hexahedron mesh generation for rock engineering. In: Yafin SA, editor. Proceedings of the 3rd international conference on advance of computer methods in geotechnology and geoenvironment engineering. Moscow: AA Balkema; 2000. p. 203–6.Google Scholar
  65. Chen SH, Xu MY, Shahrour I, Egger P. Analysis of arch dams using coupled trial load and block element methods. J Geotech Geoenviron Eng ASCE. 2003;129(11):977–86.CrossRefGoogle Scholar
  66. Chen SH, Li YM, Wang WM, Shahrour I. Analysis of gravity dam on a complicated rock foundation using an adaptive block element method. J Geotech Geoenviron Eng ASCE. 2004a;130(7):759–63.CrossRefGoogle Scholar
  67. Chen SH, Qiang S, Chen SF, Egger P. Composite element model of the fully grouted rock bolt. Rock Mech Rock Eng. 2004b;37(3):193–212.Google Scholar
  68. Chen SH, Xu Q, Hu J. Composite element method for seepage analysis of geo-technical structures with drainage hole array. J Hydrodyn (Ser. B). 2004c; 16(3):260–6.Google Scholar
  69. Chen SH, Qin WX, Shahrour I. Comparative study of sock slope stability analysis methods for hydropower projects. Mech Res Commun. 2007a;34(1):63–8.CrossRefGoogle Scholar
  70. Chen SH, Qin WX, Xu Q. Composite element method and application of trace simulation for strain localization bands. Chin J Rock Mechan Eng. 2007b;26(6):1116–22 (in Chinese).Google Scholar
  71. Chen SH, Feng XM, Shahrour I. Numerical estimation of REV and permeability tensor for fractured rock masses by composite element method. Int J Numer Anal Methods Geomech. 2008a;32(12):1459–77.zbMATHCrossRefGoogle Scholar
  72. Chen SH, Qiang S, Shahrour I, Egger P. Composite element analysis of gravity dam on a complicated rock foundation. Int J Geomech ASCE. 2008b;8(5):275–84.CrossRefGoogle Scholar
  73. Chen SH, Wang WM, Zheng HF, Shahrour I. Block element method for the seismic stability of rock slopes. Int J Geotech Geoenviron Eng ASCE. 2010a;136(12):1610–7.CrossRefGoogle Scholar
  74. Chen SH, Xue LL, Xu GS, Shahrour I. Composite element method for the seepage analysis of rock masses containing fractures and drainage holes. Int J Rock Mech Min Sci. 2010b;47(5):762–70.CrossRefGoogle Scholar
  75. Chen SH, Su PF, Shahrour I. Composite element algorithm for the thermal analysis of mass concrete: simulation of lift joint. Finite Elem Anal Des. 2011;47(5):536–42.CrossRefGoogle Scholar
  76. Chen SH, He J, Shahrour I. Estimation of elastic compliance matrix for fractured rock masses by composite element method. Int J Rock Mech Min Sci. 2012;49(1):156–64.CrossRefGoogle Scholar
  77. Chen SH, Zhang X, Shahrour I. Composite element model for the bonded anchorage head of stranded wire cable in tension. Int J Numer Anal Methods Geomech. 2015;39(12):1352–68.CrossRefGoogle Scholar
  78. Chern JC, Wang MT. Computing 3-D key blocks delimited by joint traces on tunnel surfaces. Int J Rock Mech Min Sci Geomech Abstr. 1993;30(7):1599–604.CrossRefGoogle Scholar
  79. Cho SE. Probabilistic stability analyses of slopes using the ANN-based response surface. Comput Geotech. 2009;36(5):787–97.CrossRefGoogle Scholar
  80. Clough RW, Penzien J. Dynamics of structures. 3rd ed. Berkeley: Computers & Structures Inc.; 2003.Google Scholar
  81. Cook RD, Malkus DS, Plesha ME. Concepts and applications of finite element analysis. 3rd ed. New York: Wiley; 1989.Google Scholar
  82. Courant R. Variational methods for the solution of problems of equilibrium and vibrations. Bull Amer Math Soc. 1943;49(1):1–23.MathSciNetzbMATHCrossRefGoogle Scholar
  83. Crisfield MA. Non-linear finite analysis of solids and structures. New York: Wiley; 1997.zbMATHGoogle Scholar
  84. Crouch SL, Fairhurst C. Analysis of rock deformations due to excavation. In: Sikarskie DL, editor. Proceedings of the ASME symposium on rock mechanics, vol. 3. New York: ASME; 1973. p. 25–40.Google Scholar
  85. Crouch SL, Starfield AM. Boundary element methods in solid mechanics. London: George Allen & Unwin; 1983.zbMATHGoogle Scholar
  86. Cruse TA, Rizzo FJ. A direct formulation and numerical solution of the general transient elastodynamic problem. Int J Math Anal Appl. 1968;22(1):244–59.zbMATHCrossRefGoogle Scholar
  87. Cui LJ, Sheng DC. Genetic algorithms in probabilistic finite element analysis of geotechnical problems. Comput Geotech. 2005;32(8):555–63.CrossRefGoogle Scholar
  88. Cundall PA. A computer model for simulating progressive, large-scale movement in blocky rock system. In: Proceedings of the international symposium on rock fracture, vol. 1. Nancy: ISRM; 1971. p. 129–136 (paper no. II-8).Google Scholar
  89. Cundall PA. Formulation of a three-dimensional distinct element model—part I: a scheme to detect and represent contacts in a system composed of many polyhedral blocks. Int J Rock Mech Min Sci Geomech Abstr. 1988;25(3):107–16.CrossRefGoogle Scholar
  90. Cundall PA, Hart RD. Development of generalized 2-D and 3-D distinct element programs for modelling jointed rock. ITASCA Consulting Group Misc. paper SL-85-1. Minneapolis: US Army Corps of Engineers; 1985.Google Scholar
  91. Cundall PA, Hart DH. Numerical modelling of discontinua. Eng Comput. 1992;9(2):101–13.CrossRefGoogle Scholar
  92. Cundall PA, Strack ODL. A discrete numerical model for granular assemblies. Géotechnique. 1979;29(1):47–65.CrossRefGoogle Scholar
  93. Dawson EM, Roth WH, Drescher A. Slope stability analysis by strength reduction. Géotechnique. 1999;49(6):835–40.CrossRefGoogle Scholar
  94. Dershowitz WS, Einstein HH. Three dimensional flow modeling in jointed rock masses. In: Herget G, Vongpaisal S, editors. Proceedings of the 6th ISRM congress, vol. 1. Rotterdam: AA Balkema; 1987. p. 87–92.Google Scholar
  95. Dershowitz WS, Miller I. Dual porosity fracture flow and transport. Geophys Res Lett. 1995;22(11):1441–4.CrossRefGoogle Scholar
  96. Dershowitz WS, Gordon BM, Kafritsas JC. A new three dimensional model for flow in fractured rock. In: Proceedings of the international congress on hydrogeology on rocks of low permeability. Arizona: IAH; 1985. p. 441–8.Google Scholar
  97. Desai CS, Abel JF. An introduction to the finite element method. New York: Van Nostrand Reinhold; 1972.zbMATHGoogle Scholar
  98. Desai CS, Zamman MM, Lightner JG, Siriwardane HJ. Thin layer element for interfaces and joints. Int J Numer Anal Meth Geomech. 1984;8(1):19–43.CrossRefGoogle Scholar
  99. Ding LY, Wang F, Luo HB, Yu M, Wu X. Feedforward analysis for shield-ground system. J Comput Civ Eng. 2013;27(3):231–42.CrossRefGoogle Scholar
  100. Duarte CA, Oden JT. An hp adaptive method using clouds. Comput Methods Appl Mech Eng. 1996;139(1–4):237–62.zbMATHCrossRefGoogle Scholar
  101. Duarte CA, Babuška I, Oden JT. Generalized finite element methods for three-dimensional structural mechanics problems. Comput Struct. 2000;77(2):215–32.MathSciNetCrossRefGoogle Scholar
  102. Dunnicliff J. Twenty-five steps to successful performance monitoring of dams. Hydro Rev. 1990;9(4):48–62.Google Scholar
  103. Dunnington GW. Carl Friedrich Gauss, Titan of science: a study of his life and work. Whitefish: Literary Licensing, LLC; 2012.zbMATHGoogle Scholar
  104. Dym CL, Shames IH. Solid mechanics: a variational approach. New York: McGraw-Hill; 1973.zbMATHGoogle Scholar
  105. El Harrouni K, Ouazar D, Wrobel LC, Cheng AHD. Groundwater parameter estimation by optimization and DRBEM. Eng Anal Bound Elem. 1997;19(2):97–103.zbMATHCrossRefGoogle Scholar
  106. Ellis GW, Yao C, Zhao R, Penumadu D. Stress-strain modeling of sands using artificial neural networks. J Geotech Eng ASCE. 1995;121(5):429–35.CrossRefGoogle Scholar
  107. Elsworth D. A model to evaluate the transient hydraulic response of three-dimensional sparsely fractured rock masses. Water Resour Res. 1986a;22(13):1809–19.CrossRefGoogle Scholar
  108. Elsworth D. A hybrid boundary-element-finite element analysis procedure for fluid flow simulation in fractured rock masses. Int J Numer Anal Methods Geomech. 1986b;10(6):569–84.zbMATHCrossRefGoogle Scholar
  109. Endo HK, Long JCS, Wilson CK, Witherspoon PA. A model for investigating mechanical transport in fractured media. Water Resour Res. 1984;20(10):1390–400.CrossRefGoogle Scholar
  110. Ern A, Guermond JL. Theory and practice of finite elements. New York: Springer; 2004.zbMATHCrossRefGoogle Scholar
  111. Fang Z. A local degradation approach to the numerical analysis of brittle fracture in heterogeneous rocks. Ph.D. thesis. UK: Imperial College of Science, Technology and Medicine, University of London; 2001.Google Scholar
  112. Ferentinou MD, Sakellariou MG. Computational intelligence tools for the prediction of slope performance. Comput Geotech. 2007;34(5):362–84.CrossRefGoogle Scholar
  113. Florian C. The early history of partial differential equations and of partial differentiation and Integration. Am Math Monthly. 1928;35(9):459–67.MathSciNetCrossRefGoogle Scholar
  114. Fourier J. Théorie analytique de la chaleur. Paris: Firmin Didot Père et Fils; 1822 (in French).zbMATHGoogle Scholar
  115. Fu Q, Hashash YMA, Hung S, Ghaboussi J. Integration of laboratory testing and constitutive modeling of soils. Comput Geotech. 2007;34(5):330–45.CrossRefGoogle Scholar
  116. Fumagalli E. Statical and geomechanical models. Wien: Springer; 1973.CrossRefGoogle Scholar
  117. Gallagher RH. Finite element analysis fundamentals. New Jersey: Prentice Hall, Inc.; 1975.Google Scholar
  118. Gen M, Cheng RW. Genetic algorithm and engineering design. New York: Wiley-Interscience; 1997.Google Scholar
  119. Gens A, Carol I, Alonso EE. An interface element formulation for the analysis of soil-reinforcement interaction. Comput Geotech. 1989;7(1–2):133–51.CrossRefGoogle Scholar
  120. Gens A, Carol I, Alonso EE. Rock joints: FEM implementation and applications. In: Sevaldurai APS, Boulon MJ, editors. Mechanics of geomaterial interfaces. Amsterdam: Elsevier; 1995. p. 395–420.CrossRefGoogle Scholar
  121. Ghaboussi J. Fully deformable discrete element analysis using a finite element approach. Int J Comput Geotech. 1988;5(3):175–95.CrossRefGoogle Scholar
  122. Ghaboussi J, Sidatra DE. New method of material modeling using neural networks. In: Pietruszczak S, Pande GN, editors. Proceedings of the 6th international symposium on numerical models in geomechanics. Rotterdam: AA Balkema; 1997. p. 393–400.Google Scholar
  123. Ghaboussi J, Wilson EL, Isenberg J. Finite element for rock joints and interfaces. J Soil Mech Found Div ASCE. 1973;99(SM10):849–62.Google Scholar
  124. Gingold RA, Monaghan JJ. Smoothed particle hydrodynamics—theory and application to non-spherical stars. Mon Not R Astron Soc. 1977;181(3):375–89.zbMATHCrossRefGoogle Scholar
  125. Gioda G, Carini A. A combined boundary element-finite element analysis of lined openings. Rock Mech Rock Eng. 1985;18(4):293–302.CrossRefGoogle Scholar
  126. Goh ATC. Modeling soil correlations using neural networks. J Comput Civil Eng ASCE. 1995;9(4):275–8.CrossRefGoogle Scholar
  127. Goh ATC. Genetic algorithms search for critical slip surface in multiwedge stability analysis. Can Geotech J. 1999;36(4):382–91.CrossRefGoogle Scholar
  128. Goldstine H. The computer from Pascal to von Neumann. Princeton: Princeton University Press; 1972.zbMATHGoogle Scholar
  129. Goodman RE. Methods of geological engineering in discontinuous rocks. San Francisco: West Publishing Company; 1976.Google Scholar
  130. Goodman RE, Shi G. Block theory and its application to rock engineering. Englewood Cliffs: Prentice-Hall; 1985.Google Scholar
  131. Goodman RE, Taylor R, Brekke TL. A model for the mechanics of jointed rock. J Soil Mech Found Div ASCE.1968;94(SM3):637–60.Google Scholar
  132. Grayeli R, Mortazavi A. Discontinuous deformation analysis with second-order finite element meshed block. Int J Numer Anal Methods Geomech. 2006;30(15):1545–61.zbMATHCrossRefGoogle Scholar
  133. Griffiths DV, Lane PA. Slope stability analysis by finite element. Géotechnique. 1999;49(3):387–403.CrossRefGoogle Scholar
  134. Guzina B, Tucovic I. Determining the maximum three dimensional stability of a rock wedge. Water Power. 1969;21(10):381–5.Google Scholar
  135. Habibagahi G, Bamdad A. A neural network framework for mechanical behavior of unsaturated soils. Can Geotech J. 2003;40(3):684–93.CrossRefGoogle Scholar
  136. Hart R, Cundall PA, Lemos J. Formulation of three-dimensional distinct element model. Part 2. Mechanical calculations for motion and interaction of a system composed of many polyhedral blocks. Int J Rock Mech Min Sci Geomech Abstr. 1988;25(3):117–25.CrossRefGoogle Scholar
  137. Hatzor YH, Benary R. The stability of a laminated Voussoir beam: back analysis of a historic roof collapse using DDA. Int J Rock Mech Min Sci. 1998;35(2):165–81.CrossRefGoogle Scholar
  138. Hermann LR. Laplacian-isoparametric grid generation scheme. J Eng Mech ASCE. 1976;102(EM5):749–56.Google Scholar
  139. Heuze FE, Walton OR, Maddix DM, Shaffer RJ, Butkovich TR. Analysis of explosions in hard rocks: the power of discrete element modeling. In: Rossmanith HP, editor. Mechanics of jointed and faulted rocks. Vienna: AA Balkema; 1990. p. 21–8.Google Scholar
  140. Hildebrand FB. Introduction to numerical analysis. New York: McGraw-Hill; 1956.zbMATHGoogle Scholar
  141. Ho LK. Finite element mesh generation methods: a review and classification. Comp Aided Des. 1988;20(1):27–38.zbMATHCrossRefGoogle Scholar
  142. Hocking G. Development and application of the boundary integral and rigid block method for geotechnics. Ph.D. thesis. UK: University of London; 1977.Google Scholar
  143. Hoek E, Brown ET. Underground excavations in rock. London: Institute of Mining and Metallurgy; 1982.Google Scholar
  144. Howell C, Jaquith AC. Analysis of arch dams by trial-load method. Trans ASCE. 1929;93(1):1191–225.Google Scholar
  145. Hrennikoff A. Solution of problems of elasticity by the frame-work method. ASME J Appl Mech. 1941;8(1):A619–715.MathSciNetzbMATHGoogle Scholar
  146. Hsiung SM. Discontinuous deformation analysis (DDA) with nth order polynomial displacement functions. In: Elworth D, Tinucci JP, Heasley KA, editors. Proceedings of the 38th US symposium rock mechanics in the national interest. Washington: Swets & Zeitlinger Lisse; 2001. p. 1437–44.Google Scholar
  147. Hsiung SM, Shi G. Simulation of earthquake effects on underground excavations using discontinuous deformation analysis (DDA). In: Elworth D, Tinucci JP, Heasley KA, editors. Proceedings of the 38th US symposium rock mechanics in the national interest. Washington: Swets & Zeitlinger Lisse; 2001. p. 1413–20.Google Scholar
  148. Hu Y. Block-spring-model considering large displacements and non-linear stress-strain relationships of rock joints. In: Yuan JX, editor. Computer methods and advanec in geomechanics, vol. 1. Rotterdam: AA Balkema; 1997. p. 507–12.Google Scholar
  149. Hughes TRJ. The finite element method. Englewood Cliffs: Prentice-Hall; 1987.zbMATHGoogle Scholar
  150. Hutter K, Jöhnk K. Continuum methods of physical modeling: continuum mechanics, dimensional analysis, turbulence. Berlin: Springer; 2004.zbMATHCrossRefGoogle Scholar
  151. ITASCA. UDEC manual. Minneapolis: Itasca Consulting Group Inc.; 1992.Google Scholar
  152. ITASCA. FLAC manuals. Minneapolis: Itasca Consulting Group Inc.; 1993.Google Scholar
  153. ITASCA. 3DEC manual. Minneapolis: Itasca Consulting Group Inc.; 1994.Google Scholar
  154. ICOLD. Dam safety guidelines (Bulletin 59). Paris: ICOLD; 1987.Google Scholar
  155. ICOLD. Monitoring of dams and their foundations—state of the art (Bulletin 68). Paris: ICOLD; 1988.Google Scholar
  156. ICOLD. Computational procedures for dam engineering—reliability and applicability (Bulletin 122). Paris: ICOLD; 2001a.Google Scholar
  157. ICOLD. Design features of dams to resist seismic ground motion (Bulletin 120). Paris: ICOLD; 2001b.Google Scholar
  158. ICOLD. Guidelines for use of numerical models in dam engineering (Bulletin 155). Paris: ICOLD; 2013.Google Scholar
  159. ITASCA. PFC3D—particle flow code in 3-dimensions (Version 1.1), user’s manual, vols. I & II. Minneapolis: Itasca Consulting Group Inc.; 1995a.Google Scholar
  160. ITASCA. PFC-2D and PFC-3D manuals. Minneapolis: Itasca Consulting Group Inc.; 1995b.Google Scholar
  161. ITASCA. FLAC—fast lagrangian analysis of continua, user’s guide. Minneapolis: Itasca Consulting Group Inc.; 2002.Google Scholar
  162. Jaswon MA, Ponter AR. An integral equation solution of the torsion problem. Proc Roy Soc London (Ser. A). 1963;273(1):237–46.MathSciNetzbMATHCrossRefGoogle Scholar
  163. Javadi AA, Farmani R, Toropov VV, Snee CPM. Identification of parameters for air permeability of shotcrete tunnel lining using a genetic algorithm. Comput Geotech. 1999;25(1):1–24.CrossRefGoogle Scholar
  164. Javadi AA, Tan TP, Zhang M. Neural network for constitutive modeling in finite element analysis. Comput Assist Mech Eng Sci. 2003;10(4):523–9.zbMATHGoogle Scholar
  165. Javadi AA, Mehravar M, Faramarzi A, Alireza Ahangar-Asr A. An artificial intelligence based finite element method. ISAST Trans Comput Intell Syst. 2009;1(2):1–7.Google Scholar
  166. Jin H, Wiberg NE. Two-dimensional mesh generation, adaptive remeshing and refinement. Int J Numer Methods Eng. 1990;29(7):1501–26.CrossRefGoogle Scholar
  167. Jing L. Formulation of discontinuous deformation analysis (DDA)—an implicit discrete element model for block systems. Int J Eng Geol. 1998;49(3–4):371–81.CrossRefGoogle Scholar
  168. Jing L, Hudson JA. Numerical methods in rock mechanics. Int J Rock Mech Min Sci. 2002;39(4):409–27.CrossRefGoogle Scholar
  169. Jing L, Stephansson O. Network topology and homogenization of fractured rocks. In: Jamtveit B, editor. Fluid flow and transport in rocks: mechanisms and effects. London: Chapman & Hall; 1996. p. 91–202.Google Scholar
  170. Jing L, Ma Y, Fang Z. Modelling of fluid flow and solid deformation for fractured rocks with discontinuous deformation analysis (DDA) method. Int J Rock Mech Min Sci. 2001;38(3):343–55.CrossRefGoogle Scholar
  171. Joghataie A, Dizaji MS. Transforming results from model to prototype of concrete gravity dams using neural networks. J Eng Mech ASCE. 2011;137(7):484–96.CrossRefGoogle Scholar
  172. Kang F. Collected works of Feng Kang. Beijing: National Defense Industry Press; 1994 (in Chinese).Google Scholar
  173. Katona MG. A simple contact-friction interface element with applications to buried culverts. Int J Numer Anal Methods Geomech. 1983;7(3):371–84.zbMATHCrossRefGoogle Scholar
  174. Kawai T. New discrete models and their application to seismic response analysis of structures. Nucl Eng Des. 1978;48(1):207–29.CrossRefGoogle Scholar
  175. Kikuchi A, Kawai T, Suzuki N. The rigid bodies-spring models and their applications to three-dimensional crack problems. Comput Struct. 1992;44(1–2):469–80.CrossRefGoogle Scholar
  176. Kim YS, Kim BT. Prediction of relative crest settlement of concrete-faced rockfill dams analyzed using an artificial neural network model. Comput Geotech. 2008;35(3):313–22.CrossRefGoogle Scholar
  177. Kim Y, Amadei B, Pan E. Modelling the effect of water, excavation sequence and rock reinforcement with discontinuous deformation analysis. Int J Rock Mech Min Sci Geomech Abstr. 1999;36(7):949–70.CrossRefGoogle Scholar
  178. Kim CY, Bae GJ, Hong SW, Park CH, Moon HK, Shin HS. Neural network based prediction of ground surface settlements due to tunneling. Comput Geotech. 2001;28(6–7):517–47.CrossRefGoogle Scholar
  179. Klein M. Mathematical thought from ancient to modern time. New York: Oxford University Press; 1972.Google Scholar
  180. Krenk S. Analysis of solids and structures. Cambridge: Cambridge University Press; 2009.zbMATHGoogle Scholar
  181. Lachat JC, Watson JO. Effective numerical treatment of boundary integral equations: a formulation for three-dimensional elastostatics. Int J Numer Methods Eng. 1976;10(5):991–1005.zbMATHCrossRefGoogle Scholar
  182. Lax P. Feng Kang. SIAM News. 1993:26(11).Google Scholar
  183. Le Veque JR. Finite volume methods for hyperbolic problems. Cambridge: Cambridge University Press; 2002.Google Scholar
  184. Lee IM, Park JK. Stability analysis of tunnel key block: a case study. Tunn Undergr Space Technol. 2000;15(4):453–62.CrossRefGoogle Scholar
  185. Lee CI, Song JJ. Stability analysis of rock blocks around a tunnel. In: Rossmanith HP, editor. Mechanics of jointed and faulted rock. Rotterdam: AA Balkema; 1998. p. 443–8.Google Scholar
  186. Lee C, Sterling R. Identifying probable failure modes for underground openings using a neural network. Int J Rock Mech Min Sci. 1992;29(1):49–67.CrossRefGoogle Scholar
  187. Lemos JV. A hybrid distinct element computational model for the half-plane. M.Sc. thesis. USA: University of Minnesota; 1987.Google Scholar
  188. Leu SS, Chen CN, Chang SL. Data mining for tunnel support stability: neural network approach. Autom Constr. 2001;10(4):429–41.CrossRefGoogle Scholar
  189. Li G, Wang B. Development of a 3-D block-spring model for jointed rocks. In: Rossmanith HP, editor. Mechanics of jointed and faulted rock. Rotterdam: AA Balkema; 1998. p. 305–9.Google Scholar
  190. Li S, Qian D, Liu WK, Belytschko T. A meshfree contact detection algorithm. Comput Methods Appl Mech Eng. 2001;190(24–25):3271–92.MathSciNetzbMATHCrossRefGoogle Scholar
  191. Libersky LD, Petschek AG. Smooth particle hydrodynamics with strength of materials. In: Trease HE, Crowley WP, editors. Advances in the free-lagrange method (Lecture notes in physics, vol. 395. Berlin: Springer; 1990. p. 248–57.Google Scholar
  192. Libersky LD, Petschek AG, Carney TC, Hipp JR, Allahdadi FA. High strain Lagrangian hydrodynamics—a three-dimensional SPH code for dynamic material response. J Comput Phys. 1993;109(1):67–75.zbMATHCrossRefGoogle Scholar
  193. Lin CT, Amadei B, Jung J, Dwyer J. Extensions of discontinuous deformation analysis for jointed rock masses. Int J Rock Mech Min Sci Geomech Abstr. 1996;33(7):671–94.CrossRefGoogle Scholar
  194. Liu GR. Mesh free methods: moving beyond the finite element method. 2nd ed. Boca Raton: CRC Press; 2009.Google Scholar
  195. Liu GR. A G space theory and a weakened weak (W2) form for a unified formulation of compatible and incompatible methods: Part I, theory. Int J Numer Methods Eng. 2010;81(9):1093–126.zbMATHGoogle Scholar
  196. Liu GR, Nguyen-Thoi T. Smoothed finite element methods. Boca Raton: CRC Press; 2010.CrossRefGoogle Scholar
  197. Liu GR, Zhang J, Lam KY, Li H, Xu G, Zhong ZH, Li GY, Han X. A gradient smoothing method (GSM) with directional correction for solid mechanics problems. Comput Mech. 2008;41(3):457–72.zbMATHCrossRefGoogle Scholar
  198. Lo SH. A new mesh generation scheme for arbitrary planar domains. Int J Numer Methods Eng. 1985;21(8):1403–26.zbMATHCrossRefGoogle Scholar
  199. Löhner R. Some useful data structures for the generation of unstructured grids. Commun Appl Numer Methods. 1988;4(1):123–35.MathSciNetzbMATHCrossRefGoogle Scholar
  200. Londe P. Une method d’analyse a’ trois dimensions de la stabilite d’une rive rocheuse. Ann Ponts Chaussees. 1965;135(1):37–60 (in French).Google Scholar
  201. Long JCS, Remer JS, Wilson CR, Witherspoon PA. Porous media equivalents for networks of discontinuous fractures. Water Resour Res. 1982;18(3):645–58.CrossRefGoogle Scholar
  202. Long JCS, Gilmour P, Witherspoon PA. A model for steady fluid flow in random three dimensional networks of disc-shaped fractures. Water Resour Res. 1985;21(8):1105–15.CrossRefGoogle Scholar
  203. Lorig LJ. A hybrid computational model for excavation and support design in jointed media. Ph.D. thesis. USA: University of Minnesota; 1984.Google Scholar
  204. Lorig LJ, Brady BHG. A hybrid discrete element-boundary element method of stress analysis. In: Goodman RE, Heuze FE, editors. Proceedings of the 23rd US symposium on rock mechanics. Berkeley; 1982. p. 628–636.Google Scholar
  205. Lorig LJ, Brady BHG, Cundall PA. Hybrid distinct element-boundary element analysis of jointed rock. Int J Rock Mech Min Sci Geomech Abstr. 1986;23(4):303–12.CrossRefGoogle Scholar
  206. Lucy LB. A numerical approach to the testing of the fission hypothesis. Astron J. 1977;82(12):1013–24.CrossRefGoogle Scholar
  207. Ma MY. Development of discontinuous deformation analysis, the first ten years; 1986–1996. In: Third international conference on analysis of discontinuous deformation—from theory to practice. Colorado: American Rock Mechanics Association; 1999. p. 17–32.Google Scholar
  208. Ma MY, Zaman M, Zhu JH. Discontinuous deformation analysis using the third order displacement function. In: Salami MR, Banks D, editors. Proceedings of the first international forum discontinuous deformation analysis (DDA) and simulations of discontinuous media. Berkeley: TSI Press; 1996. p. 383–94.Google Scholar
  209. Macari EJ, Samarajiva P, Wathugala W. Selection and calibration of soil constitutive model parameters using genetic algorithms. In: Yamamuro JA, Kaliakin VN, editors. Proceedings of the sessions geo-frontiers 2005 congress. Austin; 2005. p. 310–32.Google Scholar
  210. MacDonald JK. Successive approximations by the Rayleigh-Ritz variation method. Phys Rev. 1933;43(10):830–3.zbMATHCrossRefGoogle Scholar
  211. MacLaughlin MM, Doolin DM. Review of validation of the discontinuous deformation analysis (DDA) method. Int J Numer Anal Methods Geomech. 2006;30(4):271–305.zbMATHCrossRefGoogle Scholar
  212. Mahtab M, Goodman RE. Three dimensional analysis of joint rock slope. In: Proceedings of the 2nd ISRM congress, vol. 3. Beograd: Privredni Pregled; 1970. p. 353–60.Google Scholar
  213. Massey B, Ward-Smith J. Mechanics of fluids. 8th edn. London: Taylor & Francis; 2005.Google Scholar
  214. Mata J. Interpretation of concrete dam behavior with artificial neural network and multiple linear regression models. Eng Struct. 2011;33(3):903–10.CrossRefGoogle Scholar
  215. Matsui T, San KC. Finite element slope stability analysis by shear strength reduction technique. Soils Found. 1992;32(1):59–70.CrossRefGoogle Scholar
  216. McCombie P, Wilkinson P. The use of the simple genetic algorithm in finding the critical factor of safety in slope stability analysis. Comput Geotech. 2002;29(8):699–714.CrossRefGoogle Scholar
  217. McCormick BH, DeFanti TA, Brown MD. Visualization in scientific computing. New York: ACM Press; 1987.Google Scholar
  218. Melenk JM. On generalized finite element methods. Ph.D. thesis. USA: University of Maryland; 1995.Google Scholar
  219. Melenk JM, Babuška I. The partition of unity finite element method: basic theory and applications. Comput Methods Appl Mech Eng. 1996;139(1–4):289–314.MathSciNetzbMATHCrossRefGoogle Scholar
  220. Meyerhof GG. Safety factors and limit states analysis in geotechnical engineering. Can Geotech J. 1984;21(1):1–7.CrossRefGoogle Scholar
  221. Mikhlin SG. Variational methods in mathematical physics. New York: Macmillan; 1964.zbMATHGoogle Scholar
  222. Ministry of Water Resources of the People’s Republic of China. (SL282-2003) Design specification for concrete arch dams. Beijing: China WaterPower Press; 2003 (in Chinese).Google Scholar
  223. Ministry of Water Resources of the People’s Republic of China. (SL319-2005) Design specification for concrete gravity dams. Beijing: China WaterPower Press; 2005(in Chinese).Google Scholar
  224. Ministry of Water Resources of the People’s Republic of China. (SL386-2007) Design code for engineering slopes in water resources and hydropower projects. Beijing: China WaterPower Press; 2007 (in Chinese).Google Scholar
  225. Moës N, Dolbow J, Belytschko T. A finite element method for crack growth without remeshing. Int J Numer Methods Eng. 1999;46(1):131–50.zbMATHCrossRefGoogle Scholar
  226. Moller P, Hansbo P. On advancing front mesh generation in three dimensions. Int J Numer Methods Eng. 1995;38(21):3551–69.MathSciNetzbMATHCrossRefGoogle Scholar
  227. Moore G. Cramming more components onto integrated circuits. Electron Mag. 1965;38(8):114–7.Google Scholar
  228. Moore G. The microprocessor: engine of the technology revolution. Commun ACM. 1997;40(2):112–4.CrossRefGoogle Scholar
  229. Moosavi M, Grayeli R. A model for cable bolt-rock mass interaction: integration with discontinuous deformation analysis (DDA) algorithm. Int J Rock Mech Min Sci Geomech Abstr. 2006;43(4):661–70.CrossRefGoogle Scholar
  230. Morton KW, Mayers DF. Numerical solution of partial differential equations, an introduction. Cambridge: Cambridge University Press; 2005.zbMATHCrossRefGoogle Scholar
  231. Mukherjee S. Boundary elements in creep and fracture. London: Applied Science Publishers; 1982.zbMATHGoogle Scholar
  232. Munjiza A. The combined finite-discrete element method. Chichester: Wiley; 2004.zbMATHCrossRefGoogle Scholar
  233. Munjiza A, Andrews KRF. Penalty function method for combined finite-discrete element systems comprising large number of separate bodies. Int J Numer Methods Eng. 2000;49(11):1377–96.zbMATHCrossRefGoogle Scholar
  234. Munjiza A, Owen DRJ, Bićanić N. A combined finite-discrete element method in transient dynamics of fracturing solid. Int J Eng Comput. 1995;12(2):145–74.zbMATHGoogle Scholar
  235. Munjiza A, Andrews KRF, White JK. Combined single and smeared crack model in combined finite-discrete element analysis. Int J Numer Methods Eng. 1999;44(1):41–57.zbMATHCrossRefGoogle Scholar
  236. Mustoe GGW, Williams JR, Hocking G, Worgan KJ. Penetration and fracturing of brittle plates under dynamic impact. In: Proceedings of the NUMETA’87. Rotterdam: AA Balkema; 1987.CrossRefGoogle Scholar
  237. National Reform and Development Commission of the People’s Republic of China. (DL/T 5346-2006) Design specification for concrete arch dams. Beijing: China Electric Power Press; 2006a (in Chinese).Google Scholar
  238. National Reform and Development Commission of the People’s Republic of China. (DL/T 5353-2006) Design specification for engineering slopes in water resources and hydropower projects. Beijing: China Electric Power Press; 2006b (in Chinese).Google Scholar
  239. Naylor DJ, Pande GN, Simpson B, Tabb R. Finite elements in geotechnical engineering. Swansea: Pineridge Press; 1981.Google Scholar
  240. Neaupane KM, Achet SH. Use of back propagation neural network for landslide monitoring: a case study in the higher Himalaya. Eng Geol. 2004;74(3–4):213–26.CrossRefGoogle Scholar
  241. Neaupane KM, Adhikari NR. Prediction of tunneling induced ground movement with the multi-layer perceptron. Tunn Undergr Space Technol. 2006;21(2):151–9.CrossRefGoogle Scholar
  242. Newmark NM. Effects of earthquakes on dams and embankments. Géotechnique. 1965;15(2):139–60.CrossRefGoogle Scholar
  243. Ni SH, Lu PC, Juang CH. A fuzzy neural network approach to evaluation of slope failure potential. Comput Aided Civ Infrastruct Eng. 1996;11(1):59–66.CrossRefGoogle Scholar
  244. Nishigaki Y, Miki S. Application of block theory in weathered rock. In: Myer LR, Cook NGW, Goodman RE, Tsang CF, editors. Fractured and jointed rock masses. Rotterdam: AA Balkema; 1995. p. 753–8.Google Scholar
  245. Oda M. Permeability tensor for discontinuous rock masses. Géotechnique. 1985;35(4):483–95.CrossRefGoogle Scholar
  246. Ohkami T, Mitsui Y, Kusama T. Coupled boundary element/finite element analysis in geomechanics including body forces. Comput Geotech. 1985;1(4):263–78.CrossRefGoogle Scholar
  247. Ohnishi Y, Chen G. Simulation of rock mass failure with discontinuous deformation analysis. J Soc Mater Sci Japan. 1999;48(4):329–33.CrossRefGoogle Scholar
  248. Ostoja-Starzewski M. Microstructural randomness and scaling in mechanics of materials. Bosa Raton: Chapman & Hall/CRC; 2007.zbMATHCrossRefGoogle Scholar
  249. Pal S, Wathugala GW, Kundu S. Calibration of a constitutive model using genetic algorithms. Comput Geotech. 1996;19(4):325–48.CrossRefGoogle Scholar
  250. Pan XD, Reed MB. A coupled distinct element-finite element method for large deformation analysis of rock masses. Int J Rock Mech Min Sci Geomech Abstr. 1991;28(1):93–9.CrossRefGoogle Scholar
  251. Pande GN, Gerrard CM. The behaviour of reinforced jointed rock masses under various simple loading states. In: Proceedings of the 5th ISRM congress. Melbourne: Brown Prior Anderson Pty Ltd; 1983. p. F217–23.Google Scholar
  252. Pande GN, Beer G, Williams JR. Numerical methods in rock mechanics. New York: Wiley; 1990.zbMATHGoogle Scholar
  253. Partridge PW, Brebbia CA, Wrobel LC. The dual reciprocity boundary element method. Southampton and Boston: Computational Mechanics Publications and Elsevier; 1992.zbMATHGoogle Scholar
  254. Patera AT. A spectral element method for fluid dynamics—laminar flow in a channel expansion. J Comput Phys. 1984;54(3):468–88.zbMATHCrossRefGoogle Scholar
  255. Pearce CJ, Thavalingam A, Liao Z, Bićanić N. Computational aspects of the discontinuous deformation analysis framework for modelling concrete fracture. Eng Fract Mech. 2000;65(2–3):283–98.CrossRefGoogle Scholar
  256. Peraire J, Vahdati M, Morgan K, Zienkiewicz OC. Adaptive remeshing for compressible flow computations. J Comput Phys. 1987;72(2):449–66.zbMATHCrossRefGoogle Scholar
  257. Peraire J, Peiro J, Morgan K. Adaptive remeshing for three-dimensional compressible flow computations. J Comput Phys. 1992;103(2):269–85.zbMATHCrossRefGoogle Scholar
  258. Pickover CA. Frontiers of scientific visualization. New York: Wiley; 1994.Google Scholar
  259. Poliakov ANB. Modeling of tectonic problems with PAROVOZ: examples of lithospheric rifting and buckling. In: Detournay C, Hart R, editors. Proceedings of the 1st international FLAC symposium on numerical modeling in geomechanics. Rotterdam: AA Balkema; 1999. p. 165–72.Google Scholar
  260. Pont JC, editor. Le destin douloureux de Walther Ritz (1878–1909), physicien théoricien de génie. Sion: Archives de l’Etat de Valais; 2012 (in French).zbMATHGoogle Scholar
  261. Pöttler R, Swoboda GA. Coupled beam-boundary element model (FE-BEM) for analysis of underground openings. Comput Geotech. 1986;2(4):239–56.CrossRefGoogle Scholar
  262. Rafiai H, Jafari A. Artificial neural networks as a basis for new generation of rock failure criteria. Int J Rock Mech Min Sci. 2011;48(7):1153–9.CrossRefGoogle Scholar
  263. Ritz W. Über eine neue Methode zur Lösung gewisser Variationsprobleme der mathematischen Physik. J Reine Angew Math. 1909;135:1–61 (in German).MathSciNetzbMATHGoogle Scholar
  264. Rizzo FJ. An integral equation approach to boundary value problems of classical elastostatics. Quart Appl Math. 1967;25:83–95.zbMATHCrossRefGoogle Scholar
  265. Roy R, Bathe KJ, Wilson EL. Numerical methods in finite analysis. New Jersey: Prentice-Hall Inc.; 1976.Google Scholar
  266. Rudman PS. How mathematics happened: the first 50,000 years. New York: Prometheus Books; 2007.zbMATHGoogle Scholar
  267. Rumelhart DE, Hinton GE, Williams RJ. Learning internal representations by error propagation. In: Rumelhart DE, McClelland JL, The PDP Group, editors. Parallel distributed processing: explorations in the microstructure of cognition, vol. 1. Foundations. Massachusetts: MIT Press; 1986.Google Scholar
  268. Salami MR, Banks D, editors. Discontinuous deformation analysis (DDA) and simulations of discontinuous media. Albuquerque: TSI Press; 1996.Google Scholar
  269. Sbarufatti C, Manes A, Gigliol M. Advanced stochastic fem-based artificial neural network for crack damage detection. In: Proceedings of forth international conference on computational methods for coupled problems in sciences and engineering; 2011. p. 1107–19.Google Scholar
  270. Scott GA, Kottenstette JT. Tunnelling under the Apache trial. Int J Rock Mech Min Sci Geomech Abstr. 1993;30(7):1485–9.CrossRefGoogle Scholar
  271. Shan T, Zhao J. A coupled CFD-DEM analysis of granular flow impacting on a water reservoir. Acta Mech. 2014;225(8):2449–70.MathSciNetzbMATHCrossRefGoogle Scholar
  272. Sharma VM, Saxena KR, Woods RD, editors. Distinct element modelling in geomechanics. Rotterdam: CRC Press; 1999.Google Scholar
  273. Shi G. Discontinuous deformation analysis—a new numerical model for the statics and dynamics of block systems. Ph.D. thesis. Berkeley: University of California; 1988.Google Scholar
  274. Shi G. Manifold method of material analysis. In: Transactions of the 9th army conference on applied mathematics and computing. Report No. 92–1. Minneapolis: US Army Research Office; 1991. p. 57–262.Google Scholar
  275. Shi G. Discontinuous deformation analysis: a new numerical model for the statics and dynamics of deformable block structures. Eng Comput. 1992;9(2):157–68.CrossRefGoogle Scholar
  276. Shi G. Modeling rock joints and blocks by manifold method. In: Proceedings of the 33rd US symposium on rock mechanics. Rotterdam: AA Balkema; 1992. p. 639–48.Google Scholar
  277. Shi G, Goodman RE. Two dimensional discontinuous deformation analysis. Int J Numer Anal Methods Geomech. 1985;9(6):541–56.zbMATHCrossRefGoogle Scholar
  278. Shi G, Goodman RE. Finding 3-D maximum key blocks on unrolled joint traces of tunnel surfaces. In: Hustrulid WA, Johnson GA, editors. Rock mechanics contributions and challenges. Rotterdam: AA Balkema; 1990. p. 219–28.Google Scholar
  279. Shi G. Three dimensional discontinuous deformation analysis. In: Elworth D, Tinucci JP, Heasley KA, editors. Proceedings of the 38th US symposium on rock mechanics in the national interest. Washington: Swets & Zeitlinger Lisse; 2001. p. 1421–8.Google Scholar
  280. Shyu K. Nodal-based discontinuous deformation analysis. Ph.D. thesis. Berkeley: University of California; 1993.Google Scholar
  281. Simpson AR, Priest SD. The application of genetic algorithms to optimisation problems in geotechnics. Comput Geotech. 1993;15(1):1–19.CrossRefGoogle Scholar
  282. Sloan SW, Houlsby GT. An implementation of Watson’s algorithm for computing 2-dimensional Delauney triangulations. Adv Eng Softw. 1984;6(4):192–7.CrossRefGoogle Scholar
  283. Smith L, Schwartz FW. An analysis of the influence of fracture geometry on mass transport in fractured media. Water Resour Res. 1984;20(9):1241–52.CrossRefGoogle Scholar
  284. Spencer AJM. Continuum mechanics. London: Longman Group Limited; 1980.zbMATHGoogle Scholar
  285. State Economy and Trade Commission of the People’s Republic of China. (DL5108-1999) Design specification for concrete gravity dams. Beijing: China Electric Power Press; 1999 (in Chinese).Google Scholar
  286. Stolarska M, Chopp DL, Moës N, Belytschko T. Modeling crack growth by level sets in the extended finite element method. Int J Numer Methods Eng. 2001;51(8):943–60.zbMATHCrossRefGoogle Scholar
  287. Strang G, Fix GJ. An analysis of the finite element method. Englewood Cliffs: Prentice-Hall; 1973.zbMATHGoogle Scholar
  288. Strouboulis T, Babuška I, Copps K. The design and analysis of the generalized finite element method. Comput Methods Appl Mech Eng. 2000;181(1–3):43–69.MathSciNetzbMATHCrossRefGoogle Scholar
  289. Strouboulis T, Copps K, Babuška I. The generalized finite element method. Comput Methods Appl Mech Eng. 2001;190(32–33):4081–193.MathSciNetzbMATHCrossRefGoogle Scholar
  290. Struik DJ. A concise history of mathematics. New York: Dover Publications; 1987.zbMATHGoogle Scholar
  291. Sugawara K, Aoki T, Suzuki Y. A coupled boundary element characteristics method for elasto-plastic analysis of rock caverns. In: Romana M, editor. Rock mechanics and power plants. Rotterdam: AA Balkema; 1988. p. 248–58.Google Scholar
  292. Swegle JW, Hicks DL, Attaway SW. Smoothed particle hydrodynamics stability analysis. J Comput Phys. 1995;116(1):123–34.MathSciNetzbMATHCrossRefGoogle Scholar
  293. Swoboda G, Marence M. FEM modelling of rockbolts. In: Beer G, et al., editors. Proceedings of computer methods and advance in geomechanics. Cairns: AA Balkema; 1991. p. 1515–20.Google Scholar
  294. Swoboda G, Mertz W, Beer G. Rheological analysis of tunnel excavations by means of coupled finite element (FEM)-boundary element (BEM) analysis. Int J Numer Anal Methods Geomech. 1987;11(2):115–29.zbMATHCrossRefGoogle Scholar
  295. Szabó BA, Mehta AK. p-convergent finite element approximations in fracture mechanics. Int J Numer Methods Eng. 1978;12(3):551–60.zbMATHCrossRefGoogle Scholar
  296. Tan H, Chen SH. A hybrid DEM-SPH model for deformable landslide and its generated surge waves. Adv Water Resour. 2017;108:256–76.CrossRefGoogle Scholar
  297. Taylor LM. BLOCKS—a block motion code for geomechanics studies. Research Report SAND82-2373, DE83 009221. Albuquerque: Sandia National Laboratories; 1982.Google Scholar
  298. Taylor LM, Preece SD. DMC—a rigid body motion code for determining the interaction of multiple spherical particles. Research report SAND-88-3482. Albuquerque: Sandia National Laboratories; 1989.Google Scholar
  299. Taylor LM, Preece SD. Simulation of blasting induced rock motion using spherical element models. Eng Comput. 1990;9(2):243–52.CrossRefGoogle Scholar
  300. Te-Chin K. Improved modeling of rock bolting in DDA. In: Yuan JX, editor. Computer methods and advance in geomechanics. Rotterdam: AA Balkema; 1997.Google Scholar
  301. Thacker WC. A brief review of techniques for generating irregular computational grids. Int J Numer Meth Eng. 1980;15(7):1335–41.zbMATHCrossRefGoogle Scholar
  302. Timoshenko S. History of strength of materials. New York: McGraw-Hill; 1953.Google Scholar
  303. Trollope DH. The mechanics of discontinua or clastic mechanics in rock problem. In: Stagg KG, Zienkiewicz OC, editors. Rock mechanics in engineering practice. New York: Wiley; 1968 (Chapter 9).Google Scholar
  304. Turing AM. On computable numbers, with an application to the entscheidungs problem. Proc Lond Math Soc (Ser. 2). 1937;42:230–65.Google Scholar
  305. Ugai K, Leschinsky D. Three dimensional limit equilibrium and finite element analyses: a comparison of results. Soil Found. 1995;29(4):1–7.CrossRefGoogle Scholar
  306. Varadarajan A, Sharma KG, Singh RB. Some aspects of coupled FEBEM analysis of underground openings. Int J Numer Anal Methods Geomech. 1985;9(6):557–71.CrossRefGoogle Scholar
  307. Venturini WS, Brebbia CA. Some applications of the boundary element method in geomechanics. Int J Numer Anal Methods Geomech. 1983;7(4):419–43.zbMATHCrossRefGoogle Scholar
  308. Von Estorff O, Firuziaan M. Coupled BEM/FEM approach for non-linear soil/structure interaction. Eng Anal Bound Elem. 2000;24(10):715–25.zbMATHCrossRefGoogle Scholar
  309. Walton OR. Explicit particle dynamics model for granular materials. In: Proceedings of the 4th international conference on numerical methods in geomechanics. Edmonton; 1982. p. 1261–68.Google Scholar
  310. Wan RC. The numerical modeling of shear bands in geological materials. Ph.D. thesis. Edmonton: University of Alberta; 1990.Google Scholar
  311. Wang S, Ge X. Application of manifold method in simulating crack propagation. Chin J Rock Mech Eng. 1997;16(5):405–10 (in Chinese).Google Scholar
  312. Wang BL, Ma QC. Boundary element analysis methods for ground stress field of rock masses. Comput Geotech. 1986;2(5):261–74.CrossRefGoogle Scholar
  313. Wang Z, Wang S, Yang Z. Manifold method in analysis of large deformation for rock. Chin J Rock Mech Eng. 1997;16(5):399–404 (in Chinese).MathSciNetGoogle Scholar
  314. Wang J, Mogilevskaya SG, Crouch SL. A Galerkin boundary integral method for non-homogenous materials with crack. In: Elsworth D, Tunicci JP, Heasley KA, editors. Rock mechanics in the national interest. Rotterdam: AA Balkema; 2001a. p. 1453–60.Google Scholar
  315. Wang WM, Xu MY, Chen SH. Coupled method of block element and finite element for hydraulic structures. Chin J Rock Mech Eng. 2001b;20(Supp. 1):1029–33 (in Chinese).Google Scholar
  316. Wang W, Chen G, Zhang H, Zhou S, Liu S, Wu Y, Fan F. Analysis of landslide-generated impulsive waves using a coupled DDA-SPH method. Eng Anal Bound Elem. 2016;64:267–77.MathSciNetCrossRefGoogle Scholar
  317. Warburton PM. Application of a new computer model for reconstructing blocky rock geometry, analysing single rock stability and identifying keystones. In: Proceedings of the 5th ISRM congress. Melbourne: ISRM, 1983. p. F225–30.Google Scholar
  318. Warburton PM. Some modern developments in block theory for rock engineering. In: Hudson JA, editor. Comprehensive rock engineering, vol. 2. Oxford: Pergamon Press; 1993. p. 293–9.CrossRefGoogle Scholar
  319. Watson JO. Advanced implementation of the boundary element method for two-and three-dimensional elastostatics. In: Banerjee PK, Butterfield R, editors. Developments in boundary element methods, vol. 1. London: Applied Science Publishers; 1979. p. 31–63.Google Scholar
  320. Wei L, Hudson JA. A hybrid discrete-continuum approach to model hydro-mechanical behaviour of jointed rocks. Eng Geol. 1988;49(3–4):317–25.Google Scholar
  321. Wei L. Numerical studies of the hydromechanical behaviour of jointed rocks. Ph.D. thesis. UK: Imperial College of Science and Technology, University of London; 1992.Google Scholar
  322. Wilcock P. The NAPSAC fracture network code. In: Stephansson O, Jing L, Tsang CF, editors. Coupled thermo-hydro-mechanical processes of fractured media. Rotterdam: Elsevier; 1996. p. 529–38.CrossRefGoogle Scholar
  323. Wilkins ML. Calculation of elasto-plastic flow. Research Report UCRL-7322. USA: University of California, Rev I Lawrence Radiation Laboratory; 1963.Google Scholar
  324. Wittke W. Rock mechanics—theory and applications. Berlin: Springer; 1990.Google Scholar
  325. Wu K, Yang D, Wright N. A coupled SPH-DEM model for fluid-structure interaction problems with free-surface flow and structural failure. Comput Struct. 2016;177:141–61.CrossRefGoogle Scholar
  326. Xu MY, Wang WM, Chen SH. Research on the dangerous sliding-block combination of rock slopes. Rock Soil Mech. 2000;21(2):148–51 (in Chinese).Google Scholar
  327. Yerry MA, Shepard MS. Automatic 3-dimensional mesh generation by the modified octree technique. Int J Numer Methods Eng. 1984;20(11):1965–90.zbMATHCrossRefGoogle Scholar
  328. Yeung MR, Loeng LL. Effects of joint attributes on tunnel stability. Int J Rock Mech Min Sci. 1997;34(3–4) (Paper No. 348).Google Scholar
  329. Yi D, Xu MY, Chen SH, Ge XR. Application of neural network to back analysis of initial stress field of rock masses. Rock Soil Mech. 2004;25(6):943–6 (in Chinese).Google Scholar
  330. Yoo C, Kim JM. Tunneling performance prediction using an integrated GIS and neural network. Comput Geotech. 2007;34(1):19–30.MathSciNetCrossRefGoogle Scholar
  331. Yosida Y. Functional analysis. 6th edn. Berlin: Springer; 1980.Google Scholar
  332. Yow JL. Block analysis for preliminary design of underground excavations. In: Hustrulid WA, Johnson GA, editors. Rock mechanics contributions and challenges. Rotterdam: AA Balkema; 1990. p. 429–35.Google Scholar
  333. Zadeh LA. Fuzzy logic, neural networks, and soft computing. Commun ACM. 1994;37(3):77–84.CrossRefGoogle Scholar
  334. Zeng W, Liu GR. Smoothed finite element methods (S-FEM): an overview and recent developments. Arch Comput Methods Eng. 2016;24:1–39.Google Scholar
  335. Zhang X, Lu MW. Block-interfaces model for non-linear numerical simulations of rock structures. Int J Rock Mech Min Sci. 1998;35(7):983–90.CrossRefGoogle Scholar
  336. Zhang X, Lu MW, Wegner JL. A 2-D meshless model for jointed rock structures. Int J Numer Methods Eng. 2000;47(10):1649–61.zbMATHCrossRefGoogle Scholar
  337. Zhang J, Liu GR, Lam KY, Li H, Xu G. A gradient smoothing method (GSM) based on strong form governing equation for adaptive analysis of solid mechanics problems. Finite Elem Anal Des. 2008;44(15):889–909.MathSciNetCrossRefGoogle Scholar
  338. Zhou CB, Liu W, Chen YF, Hu R, Wei K. Inverse modeling of leakage through a rockfill dam foundation during its construction stage using transient flow model, neural network and genetic algorithm. Eng Geol. 2015;187:183–95.CrossRefGoogle Scholar
  339. Zhu BF. Finite element method—principle and application. 2nd edn. Beijing: China WaterPower Press; 1998 (in Chinese).Google Scholar
  340. Zhu JZ, Zienkiewicz OC, Hinton E, Wu J. A new approach to the development of automatic quadrilateral mesh generation. Int J Numer Methos Eng. 1991;32(4):849–66.zbMATHCrossRefGoogle Scholar
  341. Zhu JH, Zaman MM, Anderson SA. Modeling of shearing behavior of a residual soil with recurrent neural network. Int J Numer Anal Methods Geomech. 1998;22(8):671–87.zbMATHCrossRefGoogle Scholar
  342. Zienkiewicz OC. Achievements and some unresolved problems of the finite element methods. Int J Numer Methods Eng. 2000;47(special issue):9–28.Google Scholar
  343. Zienkiewicz OC, Cheung YK. The finite element method in structural and continuum mechanics. London: McGraw-Hill Publishing Co; 1967.zbMATHGoogle Scholar
  344. Zienkiewicz OC, Zhu JZ. A simple error estimator and adaptive procedure for practical engineering analysis. Int J Numer Methods Eng. 1987;24(2):337–57.MathSciNetzbMATHCrossRefGoogle Scholar
  345. Zienkiewicz OC, Phillips DV. An automatic mesh generation scheme for plane and curved surfaces by isoparametric coordinates. Int J Numer Methods Eng. 1971;3(3):519–28.zbMATHCrossRefGoogle Scholar
  346. Zienkiewicz OC, Best B, Dullage C, Stagg K. Analysis of nonlinear problems in rock mechanics with particular reference to jointed rock systems. In: Proceedings of the 2nd ISRM congress, vol. 3. Belgrade: ISRM; 1970. p. 501–9.Google Scholar
  347. Zienkiewicz OC, Kelly DW, Bettess P. The coupling of the finite element method and boundary solution procedures. Int J Numer Methods Eng. 1977;11(2):355–75.MathSciNetzbMATHCrossRefGoogle Scholar
  348. Zienkiewicz OC, Taylor RL, Zhu JZ. The finite element method—its basis & fundamentals. 6th edn. Oxford: Elsevier Butterworth-Heinemann; 2005.Google Scholar
  349. Zienkiewicz OC, Taylor RL, Fox DD. The finite element method for solid and structural mechanics. 7th edn. Oxford: Butterworth-Heinemann; 2013.Google Scholar
  350. Zolfaghari AR, Heath AC, McCombie PF. Simple genetic algorithm search for critical non-circular failure surface in slope stability analysis. Comput Geotech. 2005;82(3):139–52.CrossRefGoogle Scholar

Copyright information

© Springer Nature Singapore Pte Ltd. 2019

Authors and Affiliations

  1. 1.School of Water Resources and Hydropower EngineeringWuhan UniversityWuhanP.R. China

Personalised recommendations