Skip to main content

A Current Review on the Application of Enzymes in Anaerobic Digestion

  • Chapter
  • First Online:

Part of the book series: Green Energy and Technology ((GREEN))

Abstract

Although the anaerobic digestion process is widely applied in waste management, it is recognised that the hydrolysis step in the treatment is a bottleneck that can restrict the rate that methane is produced. Enzyme addition during hydrolysis of a substrate has been reported as a promising alternative to overcome this limitation. This chapter presents a review of the supplementation of enzymes to facilitate the hydrolysis process of various types of substrates in the anaerobic digestion system.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   79.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   99.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   139.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. Pilli S, More TT, Yan S, Tyagi RD, Surampalli RY, Zhang TC (2016) Anaerobic digestion or co-digestion for sustainable solid waste treatment/management. In: Sustainable solid waste management, pp 187–232. https://doi.org/10.1061/9780784414101.ch08

    Chapter  Google Scholar 

  2. Merlin Christy P, Gopinath LR, Divya D (2014) A review on anaerobic decomposition and enhancement of biogas production through enzymes and microorganisms. Renew Sustain Energy Rev 34:167–173. https://doi.org/10.1016/j.rser.2014.03.010

    Article  Google Scholar 

  3. Michalska K, Bizukojć M, Ledakowicz S (2015) Pretreatment of energy crops with sodium hydroxide and cellulolytic enzymes to increase biogas production. Biomass Bioenergy 80:213–221. https://doi.org/10.1016/j.biombioe.2015.05.022

    Article  Google Scholar 

  4. Madsen M, Holm-Nielsen JB, Esbensen KH (2011) Monitoring of anaerobic digestion processes: a review perspective. Renew Sustain Energy Rev 15(6):3141–3155. https://doi.org/10.1016/j.rser.2011.04.026

    Article  Google Scholar 

  5. Parawira W (2012) Enzyme research and applications in biotechnological intensification of biogas production. Crit Rev Biotechnol 32(2):172–186. https://doi.org/10.3109/07388551.2011.595384

    Article  Google Scholar 

  6. Quiñones TS, Plöchl M, Päzolt K, Budde J, Kausmann R, Nettmann E, Heiermann M (2012) Hydrolytic enzymes enhancing anaerobic digestion. In: Biogas production: pretreatment methods in anaerobic digestion, pp 157–198. https://doi.org/10.1002/9781118404089.ch6

    Chapter  Google Scholar 

  7. Burgess JE, Pletschke BI (2008) Hydrolytic enzymes in sewage sludge treatment: a mini-review. Water SA 34(3):343–349

    Google Scholar 

  8. Diak J, Örmeci B, Kennedy KJ (2012) Effect of enzymes on anaerobic digestion of primary sludge and septic tank performance. Bioprocess Biosyst Eng 35(9):1577–1589. https://doi.org/10.1007/s00449-012-0748-7

    Article  Google Scholar 

  9. Hettiaratchi JPA, Jayasinghe PA, Bartholameuz EM, Kumar S (2014) Waste degradation and gas production with enzymatic enhancement in anaerobic and aerobic landfill bioreactors. Bioresour Technol 159:433–436. https://doi.org/10.1016/j.biortech.2014.03.026

    Article  Google Scholar 

  10. Quiñones TS, Plöchl M, Budde J, Heiermann M (2012) Results of batch anaerobic digestion test - effect of enzyme addition. Agricult Eng Int: CIGR J 14(1):38–50

    Google Scholar 

  11. Donoso-Bravo A, Fdz-Polanco M (2013) Anaerobic co-digestion of sewage sludge and grease trap: assessment of enzyme addition. Process Biochem 48(5–6):936–940. https://doi.org/10.1016/j.procbio.2013.04.005

    Article  Google Scholar 

  12. Romero-Güiza MS, Vila J, Mata-Alvarez J, Chimenos JM, Astals S (2016) The role of additives on anaerobic digestion: a review. Renew Sustain Energy Rev 58:1486–1499. https://doi.org/10.1016/j.rser.2015.12.094

    Article  Google Scholar 

  13. Kondusamy D, Kalamdhad AS (2014) Pre-treatment and anaerobic digestion of food waste for high rate methane production – a review. J Environ Chem Eng 2(3):1821–1830. https://doi.org/10.1016/j.jece.2014.07.024

    Article  Google Scholar 

  14. Pérez-Rodríguez N, García-Bernet D, Domínguez JM (2016) Effects of enzymatic hydrolysis and ultrasounds pretreatments on corn cob and vine trimming shoots for biogas production. Bioresour Technol 221:130–138. https://doi.org/10.1016/j.biortech.2016.09.013

    Article  Google Scholar 

  15. Rollini M, Sambusiti C, Musatti A, Ficara E, Retinò I, Malpei F (2014) Comparative performance of enzymatic and combined alkaline-enzymatic pretreatments on methane production from ensiled sorghum forage. Bioprocess Biosyst Eng 37(12):2587–2595. https://doi.org/10.1007/s00449-014-1235-0

    Article  Google Scholar 

  16. Jayasinghe PA, Hettiaratchi JPA, Mehrotra AK, Steele MA (2013) Enhancing gas production in landfill bioreactors: flow-through column study on leachate augmentation with enzyme. J Hazard Toxic Radioact Waste 17(4):253–258. https://doi.org/10.1061/(ASCE)HZ.2153-5515.0000166

    Article  Google Scholar 

  17. Romano RT, Zhang R, Teter S, McGarvey JA (2009) The effect of enzyme addition on anaerobic digestion of Jose Tall Wheat Grass. Bioresour Technol 100(20):4564–4571. https://doi.org/10.1016/j.biortech.2008.12.065

    Article  Google Scholar 

  18. Schroyen M, Vervaeren H, Vandepitte H, Van Hulle SWH, Raes K (2015) Effect of enzymatic pretreatment of various lignocellulosic substrates on production of phenolic compounds and biomethane potential. Bioresour Technol 192:696–702. https://doi.org/10.1016/j.biortech.2015.06.051

    Article  Google Scholar 

  19. Speda J, Johansson MA, Odnell A, Karlsson M (2017) Enhanced biomethane production rate and yield from lignocellulosic ensiled forage ley by in situ anaerobic digestion treatment with endogenous cellulolytic enzymes. Biotechnol Biofuels 10(1). https://doi.org/10.1186/s13068-017-0814-0

  20. Mallick P, Akunna JC, Walker GM (2010) Anaerobic digestion of distillery spent wash: influence of enzymatic pre-treatment of intact yeast cells. Bioresour Technol 101(6):1681–1685. https://doi.org/10.1016/j.biortech.2009.09.089

    Article  Google Scholar 

  21. Moon HC, Song IS (2011) Enzymatic hydrolysis of foodwaste and methane production using UASB bioreactor. Int J Green Energy 8(3):361–371. https://doi.org/10.1080/15435075.2011.557845

    Article  Google Scholar 

  22. Uçkun Kiran E, Trzcinski AP, Liu Y (2015) Enhancing the hydrolysis and methane production potential of mixed food waste by an effective enzymatic pretreatment. Bioresour Technol 183:47–52. https://doi.org/10.1016/j.biortech.2015.02.033

    Article  Google Scholar 

  23. Yin Y, Liu YJ, Meng SJ, Kiran EU, Liu Y (2016) Enzymatic pretreatment of activated sludge, food waste and their mixture for enhanced bioenergy recovery and waste volume reduction via anaerobic digestion. Appl Energy 179:1131–1137. https://doi.org/10.1016/j.apenergy.2016.07.083

    Article  Google Scholar 

  24. Meng Y, Luan F, Yuan H, Chen X, Li X (2017) Enhancing anaerobic digestion performance of crude lipid in food waste by enzymatic pretreatment. Bioresour Technol 224:48–55. https://doi.org/10.1016/j.biortech.2016.10.052

    Article  Google Scholar 

  25. Angelidaki I, Sanders W (2004) Assessment of the anaerobic biodegradability of macropollutants. Rev Environ Sci Biotechnol 3(2):117–129. https://doi.org/10.1007/s11157-004-2502-3

    Article  Google Scholar 

  26. Dors G, Mendes AA, Pereira EB, de Castro HF, Furigo A (2013) Simultaneous enzymatic hydrolysis and anaerobic biodegradation of lipid-rich wastewater from poultry industry. Appl Water Sci 3(1):343–349. https://doi.org/10.1007/s13201-012-0075-9

    Article  Google Scholar 

  27. Domingues RF, Sanches T, Silva GS, Bueno BE, Ribeiro R, Kamimura ES, Franzolin Neto R, Tommaso G (2015) Effect of enzymatic pretreatment on the anaerobic digestion of milk fat for biogas production. Food Res Int 73:26–30. https://doi.org/10.1016/j.foodres.2015.03.027

    Article  Google Scholar 

  28. Forgács G, Lundin M, Taherzadeh MJ, Horváth IS (2013) Pretreatment of chicken feather waste for improved biogas production. Appl Biochem Biotechnol 169(7):2016–2028. https://doi.org/10.1007/s12010-013-0116-3

    Article  Google Scholar 

  29. Kanmani P, Kumaresan K, Aravind J (2015) Pretreatment of coconut mill effluent using celite-immobilized hydrolytic enzyme preparation from Staphylococcus pasteuri and its impact on anaerobic digestion. Biotechnol Prog 31(5):1249–1258. https://doi.org/10.1002/btpr.2120

    Article  Google Scholar 

  30. Elsamadony M, Tawfik A, Danial A, Suzuki M (2015) Use of Carica papaya enzymes for enhancement of H2 production and degradation of glucose, protein, and lipids. Energy Proc 975–980. https://doi.org/10.1016/j.egypro.2015.07.308

    Article  Google Scholar 

  31. Chen YT, Wang FS (2011) Determination of kinetic parameters for enzymatic cellulose hydrolysis using hybrid differential evolution. Int J Chem React Eng 9

    Google Scholar 

  32. Yang Q, Luo K, Xm Li, Db Wang, Zheng W, Gm Zeng, Jj Liu (2010) Enhanced efficiency of biological excess sludge hydrolysis under anaerobic digestion by additional enzymes. Bioresour Technol 101(9):2924–2930. https://doi.org/10.1016/j.biortech.2009.11.012

    Article  Google Scholar 

  33. Luo K, Yang Q, Li XM, Yang GJ, Liu Y, Wang DB, Zheng W, Zeng GM (2012) Hydrolysis kinetics in anaerobic digestion of waste activated sludge enhanced by α-amylase. Biochem Eng J 62:17–21. https://doi.org/10.1016/j.bej.2011.12.009

    Article  Google Scholar 

  34. Jha AK, Li J, Nies L, Zhang L (2011) Research advances in dry anaerobic digestion process of solid organic wastes. Afr J Biotechnol 10(65):14242–14253

    Article  Google Scholar 

  35. Gomez-Tovar F, Celis LB, Razo-Flores E, Alatriste-Mondragón F (2012) Chemical and enzymatic sequential pretreatment of oat straw for methane production. Bioresour Technol 116:372–378. https://doi.org/10.1016/j.biortech.2012.03.109

    Article  Google Scholar 

  36. Safari A, Karimi K, Shafiei M (2017) Dilute alkali pretreatment of softwood pine: a biorefinery approach. Bioresour Technol 234:67–76. https://doi.org/10.1016/j.biortech.2017.03.030

    Article  Google Scholar 

  37. Hendriks ATWM, Zeeman G (2009) Pretreatments to enhance the digestibility of lignocellulosic biomass. Bioresour Technol 100(1):10–18. https://doi.org/10.1016/j.biortech.2008.05.027

    Article  Google Scholar 

  38. Adulkar TV, Rathod VK (2014) Ultrasound assisted enzymatic pre-treatment of high fat content dairy wastewater. Ultrason Sonochem 21(3):1083–1089. https://doi.org/10.1016/j.ultsonch.2013.11.017

    Article  Google Scholar 

  39. Ziemiński K, Kowalska-Wentel M (2017) Effect of different sugar beet pulp pretreatments on biogas production efficiency. Appl Biochem Biotechnol 181(3):1211–1227. https://doi.org/10.1007/s12010-016-2279-1

    Article  Google Scholar 

  40. Krishania M, Kumar V, Vijay VK, Malik A (2013) Analysis of different techniques used for improvement of biomethanation process: a review. Fuel 106:1–9. https://doi.org/10.1016/j.fuel.2012.12.007

    Article  Google Scholar 

  41. Ravindran R, Jaiswal AK (2016) A comprehensive review on pre-treatment strategy for lignocellulosic food industry waste: challenges and opportunities. Bioresour Technol 199:92–102. https://doi.org/10.1016/j.biortech.2015.07.106

    Article  Google Scholar 

  42. Pérez-Rodríguez N, García-Bernet D, Domínguez JM (2017) Extrusion and enzymatic hydrolysis as pretreatments on corn cob for biogas production. Renew Energy 107:597–603. https://doi.org/10.1016/j.renene.2017.02.030

    Article  Google Scholar 

  43. Talaro KP, Talaro A (2002) Foundations in microbiology: basic principles. McGraw-Hill

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mariani Rajin .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Rajin, M. (2018). A Current Review on the Application of Enzymes in Anaerobic Digestion. In: Horan, N., Yaser, A., Wid, N. (eds) Anaerobic Digestion Processes. Green Energy and Technology. Springer, Singapore. https://doi.org/10.1007/978-981-10-8129-3_4

Download citation

  • DOI: https://doi.org/10.1007/978-981-10-8129-3_4

  • Published:

  • Publisher Name: Springer, Singapore

  • Print ISBN: 978-981-10-8128-6

  • Online ISBN: 978-981-10-8129-3

  • eBook Packages: EnergyEnergy (R0)

Publish with us

Policies and ethics