A Weighted Fuzzy c-Means Clustering Algorithm for Incomplete Big Sensor Data

  • Peng Li
  • Zhikui Chen
  • Yueming Hu
  • Yonglin Leng
  • Qiucen Li
Conference paper
Part of the Communications in Computer and Information Science book series (CCIS, volume 812)


Sensor data processing plays an important role on the development of the wireless sensor networks in the big data era. Owning to the existence of a large number of incomplete data in wireless sensor networks, fuzzy c-means clustering algorithm (FCM) finds it difficult to produce an appropriate cluster result. The paper proposes a distributed weighted fuzzy c-means algorithm based on incomplete data imputation for big sensor data (DWFCM). DWFCM improves Affinity Propagation (AP) clustering algorithm by designing a new similarity metrics for imputing incomplete sensor data, and then proposes a weighted FCM (wFCM) by assigning a lower weighted value to the incomplete data object for improving the cluster accuracy. Finally, we validate the proposed weighted FCM algorithm on the dataset collected from the smart WSN lab. Experiments demonstrate that the weighted FCM algorithm could fill the missing values very accurately and improve the clustering results effectively.


Wireless sensor network Big sensor data Fuzzy c-means algorithm 



This work was supported in part by the National Natural Science Foundation of China under Grants No. 61602083, 61672123 and U1301253, in part by the Fundamental Research Funds for the Central Universities under Grant No. DUT2017TB02, and the Dalian University of Technology Fundamental Research Fund under Grant No. DUT15RC(3)100.


  1. 1.
    Al-Fuqaha, A., et al.: Internet of Things: a survey on enabling technologies, protocols, and applications. IEEE Commun. Surv. Tutor. 17(4), 2347–2376 (2015)CrossRefGoogle Scholar
  2. 2.
    Gao, J., et al.: Approximate event detection over multi-modal sensing data. J. Combinatorial Optim.
  3. 3.
    Li, P., et al.: A privacy-preserving high-order neuro-fuzzy c-means algorithm with cloud computing. Neurocomputing 256, 82–89 (2017)CrossRefGoogle Scholar
  4. 4.
    Zhang, Q., et al.: An incremental CFS algorithm for clustering large data in industrial Internet of Things. IEEE Trans. Industr. Inform. (2017).
  5. 5.
    Bose, A.: Smart transmission grid applications and their supporting infrastructure. IEEE Trans. Smart Grid 1(1), 11–19 (2010)CrossRefGoogle Scholar
  6. 6.
    Gao, J., et al.: Composite event coverage in wireless sensor networks with heterogeneous sensors. In: Proceedings of 2015 IEEE Conference on Computer Communications (INFOCOM), pp. 217–225 (2015)Google Scholar
  7. 7.
    Zhang, Q., et al.: A node scheduling model based on markov chain prediction for big data. Int. J. Commun. Syst. 28(9), 1610–1619 (2015)CrossRefGoogle Scholar
  8. 8.
    Gungor, V.C., Sahin, D., Kocak, T., et al.: Smart grid technologies: communication technologies and standards. IEEE Trans. Industr. Inform. 7(4), 529–539 (2011)CrossRefGoogle Scholar
  9. 9.
    Musolesi, M.: Big mobile data mining: good or evil. IEEE Internet Comput. 18(1), 78–81 (2014)MathSciNetCrossRefGoogle Scholar
  10. 10.
    Bergelt, R., Vodel, M., Hardt, W.: Energy efficient handling of big data in embedded, wireless sensor networks. In: 2014 IEEE Sensors Applications Symposium (SAS), pp. 53–58. IEEE (2014)Google Scholar
  11. 11.
    Takaishi, D., Nishiyama, H., Kato, N., Miura, R.: Towards energy efficient big data gathering in densely distributed sensor networks. IEEE Trans. Emerg. Topics Comput. 2, 388–397 (2014)CrossRefGoogle Scholar
  12. 12.
    Diaz-Valenzuela, T., et al.: On the use of fuzzy constraints in semisupervised clustering. IEEE Trans. Fuzzy Syst. 24(4), 992–999 (2016)CrossRefGoogle Scholar
  13. 13.
    Frey, B., et al.: Clustering by passing messages between data points. Science 315(5814), 972–976 (2007)MathSciNetCrossRefzbMATHGoogle Scholar
  14. 14.
    Zhang, Q., et al.: Distributed fuzzy c-means algorithms for big sensor data based on cloud computing. Int. J. Sensor Netw. 18(1), 32–39 (2015)CrossRefGoogle Scholar
  15. 15.
    Yang, X., et al.: A robust deterministic annealing algorithm for data clustering. IEEE Trans. Data Knowl. Eng. 62(1), 84–100 (2007)CrossRefGoogle Scholar

Copyright information

© Springer Nature Singapore Pte Ltd. 2018

Authors and Affiliations

  • Peng Li
    • 1
  • Zhikui Chen
    • 1
  • Yueming Hu
    • 2
  • Yonglin Leng
    • 1
  • Qiucen Li
    • 1
  1. 1.School of Software TechnologyDalian University of TechnologyDalianChina
  2. 2.College of Natural Resources and EnvironmentSouth China Agricultural UniversityGuangzhouChina

Personalised recommendations