Skip to main content

Tracking of Miniature-Sized Objects in 3D Endoscopic Vision

  • Conference paper
  • First Online:
Algorithms and Applications

Part of the book series: Smart Innovation, Systems and Technologies ((SIST,volume 88))

Abstract

The advent of 3D endoscope has revolutionized the field of industrial and medical inspection. It allows visual examination of inaccessible areas like underground pipes and human cavity. Miniature-sized objects like kidney stone and industrial waste products like slags can easily be monitored using 3D endoscope. In this paper, we present a technique to track small objects in 3D endoscopic vision using feature detectors. The proposed methodology uses the input of the operator to segment the target in order to extract reliable and stable features. Grow-cut algorithm is used for interactive segmentation to segment the object in one of the frames and later on, sparse correspondence is performed using SURF feature detectors. SURF feature detection based tracking algorithm is extended to track the object in the stereo endoscopic frames. The evaluation of the proposed technique is done by quantitatively analyzing its performance in two ex vivo environment and subjecting the target to various conditions like deformation, change in illumination, and scale and rotation transformation due to movement of endoscope.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 199.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Allan, M., Ourselin, S., Thompson, S., Hawkes, D.J., Kelly, J., Stoyanov, D.: Toward detection and localization of instruments in minimally invasive surgery. IEEE Trans. Biomed. Eng. 60(4), 1050–1058 (2013)

    Article  Google Scholar 

  2. Baumhauer, M., Feuerstein, M., Meinzer, H.P., Rassweiler, J.: Navigation in endoscopic soft tissue surgery: perspectives and limitations. J. Endourol. 22(4), 751–766 (2008)

    Article  Google Scholar 

  3. Bay, H., Tuytelaars, T., Van Gool, L.: Surf: speeded up robust features. In: Computer Vision–ECCV 2006, pp. 404–417. Springer, (2006)

    Google Scholar 

  4. Bouguet, J.Y.: Camera calibration. Toolbox for Matlab (22 Nov 2010). Available from: http://www.vision.caltech.edu/bouguetj/calib_doc/index.html

  5. Chen, Z., Jiang, Z., Gui, W., Yang, C.: A novel device for optical imaging of blast furnace burden surface: parallel low-light-loss backlight high-temperature industrial endoscope. IEEE Sens. J. 16(17), 6703–6717 (2016)

    Article  Google Scholar 

  6. Ghosh, P., Antani, S.K., Long, L.R., Thoma, G.R.: Unsupervised grow-cut: cellular automata-based medical image segmentation. In: 2011 First IEEE International Conference on Healthcare Informatics, Imaging and Systems Biology (HISB), pp. 40–47. IEEE, (2011)

    Google Scholar 

  7. Giannarou, S., Visentini-Scarzanella, M., Yang, G.Z.: Affine-invariant anisotropic detector for soft tissue tracking in minimally invasive surgery. In: IEEE International Symposium on Biomedical Imaging: From Nano to Macro, ISBI’09, pp. 1059–1062. IEEE, (2009)

    Google Scholar 

  8. Giannarou, S., Visentini-Scarzanella, M., Yang, G.Z.: Probabilistic tracking of affine-invariant anisotropic regions. IEEE Trans. Pattern Anal. Mach. Intell. 35(1), 130–143 (2013)

    Article  Google Scholar 

  9. Harris, C., Stephens, M.: A combined corner and edge detector. In: Alvey Vision Conference, Citeseer, vol. 15, p. 50. (1988)

    Google Scholar 

  10. Hartley, R.I.: Theory and practice of projective rectification. Int. J. Comput. Vis. 35(2), 115–127 (1999)

    Article  Google Scholar 

  11. Khanam, Z., Soni, P., Raheja, J.L., et al.: Development of 3D high definition endoscope system. In: Information Systems Design and Intelligent Applications, pp. 181–189. Springer, (2016)

    Google Scholar 

  12. Lowe, D.G.: Object recognition from local scale-invariant features. In: The Proceedings of the Seventh IEEE International Conference on Computer Vision, vol. 2, pp. 1150–1157. IEEE, (1999)

    Google Scholar 

  13. Matas, J., Chum, O., Urban, M., Pajdla, T.: Robust wide-baseline stereo from maximally stable extremal regions. Image Vis. Comput. 22(10), 761–767 (2004)

    Article  Google Scholar 

  14. Mikolajczyk, K., Schmid, C.: Scale and affine invariant interest point detectors. Int. J. Comput. Vis. 60(1), 63–86 (2004)

    Article  Google Scholar 

  15. Mikolajczyk, K., Tuytelaars, T., Schmid, C., Zisserman, A., Matas, J., Schaffalitzky, F., Kadir, T., Van Gool, L.: A comparison of affine region detectors. Int. J. Comput. Vis. 65(1–2), 43–72 (2005)

    Article  Google Scholar 

  16. Muja, M., Lowe, D.G.: Fast approximate nearest neighbors with automatic algorithm configuration. VISAPP 1(2), 331–340 (2009)

    Google Scholar 

  17. Nayyar, R., Singh, P., Gupta, N.P.: Robot-assisted laparoscopic pyeloplasty with stone removal in an ectopic pelvic kidney. JSLS: J. Soc. Laparoendosc. Surg. 14(1), 130 (2010)

    Google Scholar 

  18. Puerto-Souza, G.A., Mariottini, G.L.: A fast and accurate feature-matching algorithm for minimally-invasive endoscopic images. IEEE Trans. Med. Imaging 32(7), 1201–1214 (2013)

    Article  Google Scholar 

  19. Richa, R., Bó, A.P., Poignet, P.: Robust 3D visual tracking for robotic-assisted cardiac interventions. In: Medical Image Computing and Computer-Assisted Intervention–MICCAI, pp. 267–274. Springer, (2010)

    Google Scholar 

  20. Stoyanov, D.: Surgical vision. Ann. Biomed. Eng. 40(2), 332–345 (2012)

    Article  Google Scholar 

  21. Stoyanov, D., Mylonas, G.P., Deligianni, F., Darzi, A., Yang, G.Z.: Soft-tissue motion tracking and structure estimation for robotic assisted mis procedures. In: Medical Image Computing and Computer-Assisted Intervention–MICCAI, pp. 139–146. Springer, (2005)

    Google Scholar 

  22. Ta, D.N., Chen, W.C., Gelfand, N., Pulli, K.: Surftrac: efficient tracking and continuous object recognition using local feature descriptors. In: IEEE Conference on Computer Vision and Pattern Recognition, CVPR 2009, pp. 2937–2944. IEEE, (2009)

    Google Scholar 

  23. Tuytelaars, T., Van Gool, L.: Matching widely separated views based on affine invariant regions. Int. J. Comput. Vis. 59(1), 61–85 (2004)

    Article  Google Scholar 

  24. Vezhnevets, V., Konouchine, V.: Growcut: interactive multi-label ND image segmentation by cellular automata. In: Proceedings of the Graphicon, Citeseer, pp. 150–156. (2005)

    Google Scholar 

  25. Zhang, Z.: A flexible new technique for camera calibration. IEEE Trans. Pattern Anal. Mach. Intell. 22(11), 1330–1334 (2000)

    Article  Google Scholar 

Download references

Acknowledgements

This research work was financially supported by the CSIR-Network Project, “Advanced Instrumentation Solutions for Health Care and Agro-based Applications (ASHA)”. The authors would like to acknowledge the Director, CSIR-Central Electronics Engineering Research Institute for his valuable guidance and continuous support. The authors would also extend their gratification to Birla Sarvajanik Hospital, Pilani for providing kidney stones for experiments.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zeba Khanam .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer Nature Singapore Pte Ltd.

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Khanam, Z., Raheja, J.L. (2018). Tracking of Miniature-Sized Objects in 3D Endoscopic Vision. In: Das, S., Chaki, N. (eds) Algorithms and Applications . Smart Innovation, Systems and Technologies, vol 88. Springer, Singapore. https://doi.org/10.1007/978-981-10-8102-6_6

Download citation

  • DOI: https://doi.org/10.1007/978-981-10-8102-6_6

  • Published:

  • Publisher Name: Springer, Singapore

  • Print ISBN: 978-981-10-8101-9

  • Online ISBN: 978-981-10-8102-6

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics