Discrete Wavelet Transforms

  • K. Deergha Rao
  • M.N.S. Swamy


Fourier transform has been extensively used in signal processing to analyze stationary signals. A serious drawback of the Fourier transform is that it cannot reflect the time evolution of the frequency.


  1. 1.
    A. Grossman, J. Morlet, Decompositions of hardy functions into square integrable wavelets of constant shape. SIAM J Math Anal 15(4), 75–79 (1984)MathSciNetCrossRefGoogle Scholar
  2. 2.
    Y. Meyer, Ondelettes et fonctions splines Seminaire EDP (Ecole Polytechnique, Paris, 1986)Google Scholar
  3. 3.
    I. Daubechies, Orthonormal bases of compactly supported wavelets. Commun. Pure Appl. Math. 41(7), 909–996 (1988)MathSciNetCrossRefGoogle Scholar
  4. 4.
    S. Mallat, A Wavelet Tour of Signal Processing, 2nd edn. (Academic Press, 1999)CrossRefGoogle Scholar
  5. 5.
    G.S. Strang, T.Q. Nguyen, Wavelets and Filter Banks (Wellesley Cambridge Press, MA, 1996)zbMATHGoogle Scholar
  6. 6.
    I. Daubechies, Ten Lectures on Wavelets (SIAM, CBMS Series, April 1992)Google Scholar
  7. 7.
    R. Coifman, Y. Meyer, S. Quaker, V. Wickerhauser, Signal Processing and Compression with Wavelet Packets (Numerical Algorithms Research Group, New Haven, CT: Yale University, 1990)Google Scholar
  8. 8.
    C.K. Chui, An introduction to wavelets, Academic Press,1992Google Scholar
  9. 9.
    M. Vetterli, J. Kovacevic, Wavelets and Subband Coding (Prentice-Hall, 1995)Google Scholar
  10. 10.
    P. Steffen et al., Theory of regular M-band wavelet bases. IEEE Trans. Signal Process. 41, 3487–3511 (1993)CrossRefGoogle Scholar
  11. 11.
    Peter N. Heller, Rank-m wavelet matrices with n vanishing moments. SIAM J. Matrix Anal. 16, 502–518 (1995)MathSciNetCrossRefGoogle Scholar
  12. 12.
    Gilbert Strang, Wavelets and dilation equations. SIAM Rev. 31, 614–627 (1989)MathSciNetCrossRefGoogle Scholar
  13. 13.
    A. Cohen, I. Daubechies, J.C. Feauveau, Biorthogonal bases of compactly supported wavelets. Commun. Pure Appl. Math. XLV, 485–560 (1992)MathSciNetCrossRefGoogle Scholar
  14. 14.
    S.K. Mitra, Digital Signal Processing—A Computer Based Approach (McGraw-Hill Inc, NY, 2006)Google Scholar
  15. 15.
    M.V. Wickerhauser, Acoustic Signal Compression with Wavelet Packets, in Wavelets: A Tutorial in Theory and Applications, ed. by C.K. Chui (New York Academic, 1992), pp. 679–700CrossRefGoogle Scholar
  16. 16.
    M. Misiti, Y. Misiti, G. Oppenheim, J-M. poggi, Wavelets and Their Applications (ISTEUSA, 2007)Google Scholar
  17. 17.
    M.Rao Raghuveer, Ajit S. Bopardikar, Wavelet Transforms: Introduction to Theory and Applications (Pearson Education, Asia, 2000)zbMATHGoogle Scholar
  18. 18.
    Y. Zhao, M.N.S. Swamy, Technique for designing biorthogonal wavelet filters with an application to image compression. Electron. Lett. 35 (18) (September 1999)CrossRefGoogle Scholar
  19. 19.
    K.D. Rao, E.I. Plotkin, M.N.S. Swamy, An Hybrid Filter for Restoration of Color Images in the Mixed Noise Environment, in Proceedings of ICASSP, vol. 4 (2002), pp. 3680–3683Google Scholar
  20. 20.
    N. Gupta, E.I. Plotkin, M.N.S. Swamy, Wavelet domain-based video noise reduction using temporal dct and hierarchically-adapted thresholding. IEE Proceedings of—Vision, Image and Signal Processing 1(1), 2–12 (2007)Google Scholar
  21. 21.
    M.I.H. Bhuiyan, M.O. Ahmad, M.N.S. Swamy, Wavelet-based image denoisingwith the normal inverse gaussian prior and linear minimum mean squared error estimator. IET Image Proc. 2(4), 203–217 (2008)CrossRefGoogle Scholar
  22. 22.
    M.I.H. Bhuiyan, M.O. Ahmad, M.N.S. Swamy, Spatially-adaptive thresholding in wavelet domain for despeckling of ultrasound images. IET Image Proc. 3, 147–162 (2009)CrossRefGoogle Scholar
  23. 23.
    S.M.M. Rahman, M.O. Ahmad, M.N.S. Swamy, Video denoising based on inter-frame statistical modeling of wavelet coefficients. IEEE Trans. Circuits Syst. Video Technol. 17, 187–198 (2007)CrossRefGoogle Scholar
  24. 24.
    S.M.M. Rahman, M.O. Ahmad, M.N.S. Swamy, Bayesian wavelet-based imagedenoising using the gauss-hermite expansion. IEEE Trans. Image Process. 17, 1755–1771 (2008)MathSciNetCrossRefGoogle Scholar
  25. 25.
    S.M.M. Rahman, M.O. Ahmad, M.N.S. Swamy, A new statistical detector for dwt-based additive image watermarking using the gauss-hermite expansion. IEEE Trans. Image Process. 18, 1782–1796 (2009)MathSciNetCrossRefGoogle Scholar
  26. 26.
    S.M.M. Rahman, M.O. Ahmad, M.N.S. Swamy, Contrast-based fusion of noisy images using discrete wavelet transform. IET Image Proc. 4, 374–384 (2010)MathSciNetCrossRefGoogle Scholar
  27. 27.
    D.L. Donoho, L.M. Johnstone, Adapting to unknown smoothness via wavelet shrinkage. J Am. Stat. Soc. 90, 1200–1224 (1995)MathSciNetCrossRefGoogle Scholar
  28. 28.
    D.L. Donoho, L.M. Johnstone, Ideal spatial adaptation via wavelet shrinkage. Biometrika 81, 425–455 (1994)MathSciNetCrossRefGoogle Scholar
  29. 29.
    L.M. Johnstone, B.W. Silverman, Wavelet threshold estimators for data with correlated noise. J Roy. Stat. Soc. B 59, 319–351 (1997)MathSciNetCrossRefGoogle Scholar
  30. 30.
    K.D. Rao, New Approach for Digital Image Watermarking and transmission over Bursty WirelessChannels, in Proceedings of IEEE International Conference on Signal Processing (Beijing, 2010)Google Scholar
  31. 31.
    G.K. Wallace, The JPEG still picture compression standard. IEEE Trans. Consumer Electron. 38, xviii–xxxiv (1992)CrossRefGoogle Scholar
  32. 32.
    W.B. Pennebaker, J.L. Mitcell, JPEG: Still Image Data Compression Standard (Van Nostrand Reinhold, New York, 1993)Google Scholar

Copyright information

© Springer Nature Singapore Pte Ltd. 2018

Authors and Affiliations

  1. 1.Department of Electronics and Communication EngineeringVasavi College of Engineering (affiliated to Osmania University)HyderabadIndia
  2. 2.Department of Electrical and Computer EngineeringConcordia UniversityMontrealCanada

Personalised recommendations