Advertisement

Fractal and Periodical Biological Antennas: Hidden Topologies in DNA, Wasps and Retina in the Eye

  • P. Singh
  • M. Ocampo
  • J. E. Lugo
  • R. Doti
  • J. Faubert
  • S. Rawat
  • S. Ghosh
  • Kanad RayEmail author
  • Anirban Bandyopadhyay
Chapter
Part of the Studies in Computational Intelligence book series (SCI, volume 761)

Abstract

Although the notion of an integrating equation of life has yet to be discovered, the Fibonacci order may institute a basis for such a growth. We examined various biological structures based on Fibonacci numbers. We have observed that (i) for wasp Fibonacci’s sequence increases the information amount. (ii) The energy sources should be connected at both ends of DNA structure; single source is not suitable for energy transmission. (iii) Array form of eye’s receptor cell is enabled to capture the clocking conduction, localization and delocalization nature of field. We also identified the entire resonance peaks for every reported structure. Fibonacci-based structures may be used in biomedical applications like as to understand the signal propagation along the structures.

Keywords

Fibonacci number Wasp DNA Receptor cells Energy distribution Clocking conduction 

References

  1. 1.
    Klocke D., Schmitz A., Soltner H., Bousack H., and Schmitz H. (2011) Infrared receptors in pyrophilous (“fire loving”) insects as model for new un-cooled infrared sensors Beilstein J Nanotechnol vol. 2: 186–197.Google Scholar
  2. 2.
    Persaud-Sharma D and O’Leary JP. (2015) Fibonacci Series, Golden Proportions, and the Human Biology. Austin J Surg. vol. 2(5): 1066.Google Scholar
  3. 3.
    Ali A., Hossein H., Mohammad M. S. (2013) The antenna analysis of insect antennae, World Journal of Modeling and Simulation Vol. 9(3): 235–240.Google Scholar
  4. 4.
    ZebTedford, “Communication between the insect” April 2011.Google Scholar
  5. 5.
    Gavan, J., Ishay, J.S. (2000)Hypothesis of natural radar tracking and communication direction finding systems affecting hornets flight, Journal of electromagnetic waves and applications 13(2):247–48Google Scholar
  6. 6.
    Singh P., Doti R., Lugo J.E., Faubert J., Rawat S., Ghosh S., Ray, K. and Bandyopadhyay A. (2016) Biological Infrared Antenna and Radar, ch-108; Soft Computing: Theories and Applications Proceedings of SoCTA vol. 2, Advanced Intelligent Systems and Computing, Springer.Google Scholar
  7. 7.
    Campbell, A.L., Rajesh, R., Laura, S., Morley, O.S.: Biological infrared imaging and sensing 206 micron. 33(2), 211–225 (2002)Google Scholar
  8. 8.
    Schmitz, H., Bleckmann, H.: The photomechanism infrared receptor for the detection of forest 2014 fires in the battle melanophila acuminate. J. Comp. Physiol. A 182, 647–657 (1997), 2054.Google Scholar
  9. 9.
  10. 10.
    Y. Ramat- samii, J. M. Kovita, H. Rajagopalan: NatureInspired Optimization Technique in Communication Antenna Design. Proceeding of the IEEE, 100 (7), pp. 2132–2144, 2012.Google Scholar
  11. 11.
    H. Vogel. A better way to construction the sunflower head. Mathematical Bioscience, 44, pp. 179–189, 1997.Google Scholar
  12. 12.
    Singh P., Ray K., Rawat S. (2016) Nature Inspired Sunflower Shaped Microstrip Antenna for Wideband Performance IJCISIMA 8:364–371.Google Scholar
  13. 13.
    Singh P. Ray K., Rawat S. (2015) Design of Nature Inspired Broadband Microstrip Patch Antenna for Satellite Communication Advances in Nature and Biologically Inspired Computing pp 369–379 AISC, volume 419.Google Scholar
  14. 14.
    Stutsman W (1998) Estimating Directivity and Gain of Antennas. IEEE Antennas and Propagation Magazine, 40 (4): 7–11.Google Scholar
  15. 15.
    Sahu S., Ghosh S., Fujita D., Bandyopadhyay A. (2014) Live visualizations of single isolated tubulin protein self-assembly via tunneling current: effect of electromagnetic pumping during spontaneous growth of microtubule, Scientific Reports 4, 7303 http://dx.doi.org/10.1038/srep07303.
  16. 16.
    Sage C, Carpenter D (Eds.) A scientific perspective on health risk of electromagnetic fields. 244 Published online 31 August 2007 at: http://www.bioinitiative.org/report/index.htm
  17. 17.
    Aihua G., Yingying X. (2012) The Research of the Generalized Fibonacci Sequence-based Propagation. Physics Procedia, 24: 1737–1741.Google Scholar
  18. 18.
    Michel E. Yamagishi B., Shimabukura A. I., Nucleotide Frequencies in Human Genome and Fibonacci Number: 1–12.Google Scholar
  19. 19.
    P. Singh, R. Doti, J. E. Lugo, J. Faubert, S. Rawat, S. Ghosh, K. Ray and A. Bandyopadhyay, (2016) DNA as An Electromagnetic Fractal Cavity Resonator: Its Universal Sensing and Fractal Antenna Behavior, ch-98; Soft Computing: Theories and Applications Proceedings of SoCTA vol. 2, Advanced Intelligent Systems and Computing, Springer.Google Scholar
  20. 20.
  21. 21.
    Watson, J.D., Crick, F.C.H. (1993) Molecular structure of nucleic acids, a structure for deoxyribonucleic acids. Nature 171: 737–738.Google Scholar
  22. 22.
    Dewarrat, F. C.: Electric characterization of DNA thesis (2002). https://nanoelectronics.unibas.ch/…/theses/Dewarrat-PhD-Thesis.pdf
  23. 23.
    Sahu, S., Ghosh, S., Hirata, K., Fujita, D., Bandyopadhyay, A. (2013) Multi-level memory-switching properties of a single brain microtubule. Appl. Phys. Lett. 102, 123701.Google Scholar
  24. 24.
    Sahu, S., Ghosh, S., Ghosh, B., Aswani, K., Hirata, K., Fujita, D., Bandyopadhyay, A. (2013) Atomic water channel controlling remarkable properties of a single brain microtubule: correlating single protein to its supramolecular assembly. Biosens. Bioelectron. 47: 141–148.Google Scholar
  25. 25.
  26. 26.
  27. 27.
    Singh P., Doti R., Lugo J.E., Faubert J., Rawat S., Ghosh S., Ray K. and Bandyopadhyay A. (2016) Frequency Fractal Behavior in the Retina Nano-Center-Fed Dipole Antenna Network of a Human Eye, ASIC.Google Scholar
  28. 28.
    Rotanowska, M., Sarna, Y. (2005) Light-induced damage to the retina: role of rhodopsin chromophore revisited. Photochem. Photobiol. 81: 1305–1330.  https://doi.org/10.1562/2004-11-13-1R3-371
  29. 29.
    The Interaction between Light and Matter. www.springer.com/cda/content/…/cda…/9783642322600-c1.pdf.
  30. 30.
    Canbay C. and Unal I. (2008) Electromagnetic Modeling of Retinal Photoreceptors, PIER, 83:353–374.Google Scholar
  31. 31.
    Gerald C. Huth, “A Modern Explanation for Light Interaction with the Retina of the Eye Based on Nanostructural Geometry: Rethinking the Vision Process, http://www.ghuth.com/.

Copyright information

© Springer Nature Singapore Pte Ltd. 2018

Authors and Affiliations

  • P. Singh
    • 1
  • M. Ocampo
    • 2
  • J. E. Lugo
    • 2
  • R. Doti
    • 2
  • J. Faubert
    • 2
  • S. Rawat
    • 3
  • S. Ghosh
    • 4
  • Kanad Ray
    • 1
    Email author
  • Anirban Bandyopadhyay
    • 5
  1. 1.Amity UniversityJaipurIndia
  2. 2.Faubert LabUniversité de MontréalMontrealCanada
  3. 3.Manipal University JaipurJaipurIndia
  4. 4.CSIR-North East Institute of Science & TechnologyJorhatIndia
  5. 5.Advanced Key Technologies DivisionNational Institute for Materials ScienceTsukubaJapan

Personalised recommendations