Skip to main content

Leucaena leucocephala: A Leguminous Tree Suitable for Eroded Habitats of Hawaiian Islands

  • Chapter
  • First Online:

Abstract

Leucaena leucocephala is divided into two subspecies: (i) L. leucocephala subsp. leucocephala, which is known as “common leucaena” or “koa haole,” and (ii) L. leucocephala subsp. glabrata, which is known as “giant leucaena.” Common leucaena is a small bushy shrub that forms a lot of seeds, because of which it can spread easily and is considered invasive. Giant leucaena, on the other hand, is a tree with large branches. It produces much less seeds and is not considered invasive. Giant leucaena can grow to become big trees of up to ~20 m in height, or it can be grown as a legume fodder by maintaining the plants as dwarf bushes through repeated harvest of foliage, up to ten times a year. The wood of giant leucaena can be used for timber, paper pulp, or biofuel production. In the Hawaiian Islands, many eroded habitats, such as roadsides, hill slopes, and barren lands, are generally occupied by common leucaena. Replacing common leucaena with giant leucaena in these locations may create new opportunities for cattle farming, animal feed production, and development of other related industry. Dr. James Brewbaker and his colleagues at the University of Hawaii developed many high-yielding cultivars of giant leucaena suitable for both fodder and wood production. Besides growing in Hawaii, these cultivars are also widely grown in many other tropical and subtropical countries.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  • Allison MJ, Mayberry WR, Mcweeney CS, Stahl DA (1992) Synergistes jonesii, gen. nov., sp. nov.: a rumen bacterium that degrades toxic pyridinediols. Syst Appl Microbiol 15:522–529

    Article  CAS  Google Scholar 

  • Anthraper A, Dubois JD (2003) The effect of NaCl on growth, N2 fixation (acetylene reduction), and percentage total nitrogen in Leucaena leucocephala (Leguminosae) var. k-81. Am J Bot 90:683–692

    Article  Google Scholar 

  • Austin MT, Early RJ, Brewbaker JL, Sun W (1997) Yield, psyllid resistance, and phenolic concentration of leucaena in two environments in Hawaii. Agron J 89:507–515

    Article  CAS  Google Scholar 

  • Awaya JD, Fox PM, Borthakur D (2005) pyd genes of Rhizobium sp. strain TAL1145 are required for degradation of 3-hydroxy-4-pyridone, an aromatic intermediate in mimosine metabolism. J Bacteriol 187(13):4480–4487

    Article  CAS  Google Scholar 

  • Awaya JD, Walton C, Borthakur D (2007) The pydA-pydB gene produces an active dioxygenase-hydrolase that degrades 3-hydroxy-4-pyridone, an intermediate of mimosine metabolism. Appl Microbiol Biotechnol 75:583–588

    Article  CAS  Google Scholar 

  • Borthakur D, Soedarjo FPM, Webb DT (2003) The mid genes of Rhizobium sp. strain TAL1145 are required for degradation of mimosine into 3-hydroxy-4-pyridone and are inducible by mimosine. Microbiology 149:537–546

    Article  CAS  Google Scholar 

  • Bourges H, Morales de León JC (1980) The experience in Mexico on the utilization of non-conventional protein sources. Nutr Food Sci 2:277–287

    Article  Google Scholar 

  • Brandon NJ, Shelton HM, Peck DM (1997) Factors affecting the early growth of Leucaena leucocephala. 2. Importance of arbuscular mycorrhizal fungi, grass competition and phosphorus application on yield and nodulation of leucaena pots. Aust J Exp Agric 37:35–43

    Article  Google Scholar 

  • Brewbaker JL (1975) Registration of Hawaiian Giant K8 Leucaena1 (Reg. No. 16). Crop Sci 15(6):885

    Article  Google Scholar 

  • Brewbaker JL (1987) Leucaena: a multipurpose tree genus for tropical agroforestry. In: Steppler HA, PKR N (eds) Agroforestry – a decade of development. International Council for Research in Agroforestry (ICRAF), Nairobi, pp 289–324

    Google Scholar 

  • Brewbaker JL (2008) Registration of ‘KX2-Hawaii’, interspecific-hybrid leucaena. J Plant Registration 2:190–193

    Article  Google Scholar 

  • Brewbaker JL (2010) Leucaena is not Koa Haole. Hawaii For J 5:5–8

    Google Scholar 

  • Brewbaker JL (2013) ‘KX4-Hawaii’, seedless interspecific hybrid Leucaena. Hortscience 48:1–2

    Google Scholar 

  • Brewbaker JL (2016) Breeding Leucaena: tropical multipurpose leguminous tree. Plant Breed Rev 40:43–121

    Article  Google Scholar 

  • Brewbaker JL, Hylin JW (1965) Variations in mimosine content among Leucaena species and related Mimosaceae. Crop Sci 5:348–349

    Article  CAS  Google Scholar 

  • Brewbaker JL, Pluckett D, Gonzalez V (1972) Varietal variation and yield trials of Leucaena leucocephala (Koa haole) in Hawaii. Hawaii Agric Exp Station Bull 166:3–29

    Google Scholar 

  • Brewbaker JL, Sorensson CT, Wheeler RW (1990) New tree crops from interspecific Leucaena hybrids. In: Janick J, Simon JE (eds) Advances in new crops. Timber Press, Portland, pp 283–289

    Google Scholar 

  • Cavalcante ADMB, de Perez SCJGA (1995) Effects of water and salt stresses on germination of Leucaena leucocephala (Lam.) de Wit seeds. Pesqui Agropecuaria Bras 30:281–289

    Google Scholar 

  • Chanchay N, Poosaran N (2009) The reduction of mimosine and tannin contents in leaves of Leucaena leucocephala. Asian J Food Agro-Ind:S137–S144

    Google Scholar 

  • Chen Y, Chen F, Liu L, Zhu S (2012) Physiological responses of Leucaena leucocephala seedlings to drought stress. Procedia Eng 28:110–116

    Google Scholar 

  • Dalzell SA, Shelton HM, Mullen BF, Lauren PH, McLaughlin KG (2006) Leucaena: a guide to establishment and management. Meat & Livestock Australia LTd, Sydney. isbn:1 7419 1013 7

    Google Scholar 

  • Dijkman MJ (1950) Leucaena-A promising soil-erosion-control plant. Econ Bot 4:337

    Article  Google Scholar 

  • Ezenwa IV, Atta-Krah AN (1992) Early growth and nodulation in Leucaena and Gliricidia and the effects of pruning on biomass productivity. In: Mulongoy K, Gueye M, Spencer DSC (eds) Biological nitrogen fixation and sustainability of tropical agriculture. International Institute of Tropical Agriculture, Ibadan, pp 171–178

    Google Scholar 

  • Fox PM, Borthakur D (2001) Selection of several classes of mimosine-degradation-defective Tn3Hogus-insertion mutants of Rhizobium sp. strain TAL1145 on the basis of mimosine-inducible GUS activity. Can J Microbiol 47:488–494

    Article  CAS  Google Scholar 

  • Funasaki GY, Lai PY, Nakahara LM (1989) Status of natural enemies of Heteropsylla cubana Crawford (Homoptera: psyllidae) in Hawaii, pp. 153–158 in Leuceana psyllid: problems and management. In: Proceedings of an International Workshop held January 16–21, Bogor

    Google Scholar 

  • Garcia GW, Ferguson TU, Neckles FA, Archibald KAE (1996) The nutritive value and forage productivity of Leucaena leucocephala. Anim Feed Sci Technol 60:29–41

    Article  Google Scholar 

  • George MLC, Young JPW, Borthakur D (1994) Genetic characterization of Rhizobium sp. strain TAL1145 that nodulates tree legumes. Can J Microbiol 40:208–215

    Article  CAS  Google Scholar 

  • Gonzalez V, Brewbaker JL, Hamill DE (1967) Leucaena cytogenetics in relation to the breeding of low mimosine lines. Crop Sci 7(2):140–143

    Article  CAS  Google Scholar 

  • Govindarajulu R, Hughes CE, Bailey CD (2011a) Phylogenetic and population genetic assessment of diploid Leucaena reveal cryptic species diversity and patterns of allopatric divergent speciation. Am J Bot 98:2049–2063

    Article  Google Scholar 

  • Govindarajulu R, Hughes CE, Alexander PJ, Bailey CD (2011b) The complex evolutionary dynamics of ancient and recent polyploidy in Leucaena (Leguminosae; Mimosoideae). Am J Bot 98:2064–2076

    Article  Google Scholar 

  • Habte M, Manjunath A (1987) Soil solution phosphorus status and mycorrhizal dependency in Leucaena leucocephala. Appl Environ Microbiol 53:797–801

    CAS  PubMed  PubMed Central  Google Scholar 

  • Harris SA, Hughes CE, Ingram R, Abbott RJ (1994) A phylogenetic analysis ofLeucaena (Leguminosae: mimosoideae). Plant Syst Evol 191(1–2):1–26

    Article  Google Scholar 

  • Harris SA (1995b) Systematics and randomly amplified polymorphic DNA in the genusLeucaena (Leguminosae, mimosoideae). Plant Syst Evol 197(1-4):195–208

    Article  CAS  Google Scholar 

  • Hongo F, Shiroma S, Kawashima Y, Sunagawa K, Kawamoto Y, Tawata S (1990) Effect of Leucaena tea on rats. Leucaena Res Rep 11:74–75

    Google Scholar 

  • Huang RH, Smith WK, Yost RS (1985) Influence of vesicular-arbuscular mycorrhizae on growth, water relations, and leaf orientation in Leucaena leucocephala (Lam.) de Wit. New Phytol 99:375–378

    Article  Google Scholar 

  • Hughes CE, Govindarajulu R, Robertson A, Harris SA, Bailey CD (2007) Serendipitous backyard hybridization and the origin of crops. Proc Natl Acad Sci U S A 104:14389–14394

    Article  CAS  Google Scholar 

  • Ishihara KL, Honda MDH, Pham DT, Borthakur D (2016) Transcriptome analysis of Leucaena leucocephala and identification of highly expressed genes in roots and shoots. Transcriptomics 4:135

    Article  Google Scholar 

  • Jayanthy V, Geetha R, Rajendran R, Prabhavathi P, Karthik Sundaram S et al (2014) Phytoremediation of dye contaminated soil by Leucaena leucocephala (subabul) seed and growth assessment of Vigna radiata in the remediated soil. Saudi J Biol Sci 21:324–333

    Article  CAS  Google Scholar 

  • Jones RJ (1979) The value of Leucaena leucocephala as a feed for ruminants in the tropics. World Anim Rev 31:13–23

    Google Scholar 

  • Jones RJ, Megarrity RG (1986) Successful transfer of DHP-degrading bacteria from Hawaiian goats to Australian ruminants to overcome the toxicity of Leucaena. Aust Vet J 63:259–262

    Article  CAS  Google Scholar 

  • Juson AEDS, Martinez MKM, Ching JA (2016) Accumulation and distribution of heavy metals in Leucaena leucocephala Lam. and Bougainvillea spectabilis Willd. plant systems. J Exp Biol Agric Sci 4:1–6

    CAS  Google Scholar 

  • Kadiata BD, Mulongoy K, Isirimah NO (1995) Dynamics of nodulation, nitrogen fixation, nitrogen use and biomass yield over time in pot-grown Leucaena leucocephala (Lam.) de Wit. Biol Fertil Soils 20:163–168

    Article  CAS  Google Scholar 

  • López F, García MM, Yánez R, Tapias R, Fernández M et al (2008) Leucaena species valoration for biomass and paper production in 1 and 2 year harvest. Bioresour Technol 99:4846–4853

    Article  Google Scholar 

  • Manjunath A, Habte M (1988) Development of vesicular-arbuscular mycorrhizal infection and the uptake of immobile nutrients in Leucaena leucocephala. Plant Soil 106:97–103

    Article  Google Scholar 

  • Manjunath A, Bagyraj DJ, Gopala Gowda HS (1984) Dual inoculation with VA mycorrhiza and Rhizobium is beneficial to Leucaena. Plant Soil 78:445–448

    Article  Google Scholar 

  • Manjunath A, Hue NV, Habte M (1989) Response of Leucaena leucocephala to vesicular-arbuscular mycorrhizal colonization and rock phosphate fertilization in an oxisol. Plant Soil 114:127–133

    Article  Google Scholar 

  • Martínez-Romero E, Segovia L, Mercante FM, Franco AA, Graham P et al (1991) Rhizobium tropici, a novel species nodulating Phaseolus vulgaris L. beans and Leucaena sp. trees. Int J Syst Bacteriol 41:417–426

    Article  Google Scholar 

  • Mawardi AMA (1985) The general uses of lamtoro (Leucaena) in Indonesia. Leucaena Res Rep (EUA) 6:57–58

    Google Scholar 

  • McClay AS (1989) Distribution of Leucaena psyllid and its natural enemies in Mexico: implications for biological control. In: Napompeth B, MacDicken KG (eds) Leucaena psyllid: problems and management, Proceedings of international workshop, Bogor, Indonesia; Winrock international and NFTA, Hawaii, p139–143

    Google Scholar 

  • Mislevy P, Blue WG, Roessler CE (1989) Productivity of clay tailings from phosphate mining. I Biomass crops. J Environ Qual 18:95–100

    Article  CAS  Google Scholar 

  • Moawad H, Bohlool BB (1984) Competition among Rhizobium spp. for nodulation of Leucaena leucocephala in two tropical soils. Appl Environ Microbiol 48:5–9

    CAS  PubMed  PubMed Central  Google Scholar 

  • Mushaka A, Maruzane D (1998) Performance of some multipurpose tree species: the forestry commission experience. Afr J Online 72:10–14

    Google Scholar 

  • National Academy of Sciences (1977) Leucaena – promising tree and forage crop for the tropics. National Academy of Sciences, Washington, DC, p 121

    Google Scholar 

  • Negi VS, Borthakur D (2016) Heterologous expression and characterization of mimosinase from Leucaena leucocephala. Methods Mol Biol 1405:59–77

    Article  CAS  Google Scholar 

  • Negi VS, Bingham J-P, Li QX, Borthakur D (2013) midD-encoded ‘rhizomimosinase’ from Rhizobium sp. strain TAL1145 is a C–N lyase that catabolizes L-mimosine into 3-hydroxy-4-pyridone, pyruvate and ammonia. Amino Acids 44:1537–1547

    Article  CAS  Google Scholar 

  • Negi VS, Bingham J-P, Li QX, Borthakur D (2014) A carbon-nitrogen lyase from Leucaena leucocephala catalyzes the first step of mimosine degradation. Plant Physiol 164:922–934

    Article  CAS  Google Scholar 

  • Nguyen BCQ, Chompoo J, Tawata S (2015) Insecticidal and nematicidal activities of novel mimosine derivatives. Molecules 20:16741–16756

    Article  CAS  Google Scholar 

  • Osborne NJT, McNeill DM (2001) Characterization of Leucaena condensed tannins by size and protein precipitation capacity. J Sci Food Agric 81:1113–1119

    Article  CAS  Google Scholar 

  • Osonubi O, Mulongoy K, Awotoye OO, Atayese MO, Okali DUU (1991) Effects of ectomycorrhizal and vesicular-arbuscular mycorrhizal fungi on drought tolerance of four leguminous woody seedlings. Plant Soil 136:131–143

    Article  Google Scholar 

  • Othman AB, Prine GM (1984) Leucaena accessions resistant to jumping plant lice. Leucaena Res Rep 5:86–87

    Google Scholar 

  • Pandey VC, Kumar A (2013) Leucaena leucocephala: an underutilized plant for pulp and paper production. Genet Resour Crop Evol 60:1165–1171

    Article  Google Scholar 

  • Poole H (2003) Dryland salinity management in Central Queensland using Leucaena leucocephala. 4th year project, bachelor of encironmental science (natural resource science). University of Queensland, Brisbane

    Google Scholar 

  • Purcino AAC, Lurlarp C, Lynd JQ (1986) Mycorrhiza and soil fertility effects with growth, nodulation and nitrogen fixation of Leucaena grown on a typic eutrustox. Commun Soil Sci Plant Anal 17:473–489

    Article  Google Scholar 

  • Puthur JT, Prasad KVSK, Sharmila P, Pardha Saradhi P (1998) Vesicular arbuscular mycorrhizal fungi improves establishment of micropropagated Leucaena leucocephala plantlets. Plant Cell Tissue Organ Cult 53:41–47

    Article  Google Scholar 

  • Qamar IA, Muhammad I, Louhaichi M (2015) Managing rangelands: promoting sustainable tree species Leucaena leucocephala: a versatile tree producing nutritious fodder for ruminants. Technical Report, ICARDA January 15, 2015. https://doi.org/10.13140/RG.2.1.2108.5920

  • Rao PB, Kaur A, Tewari A (2008) Drought resistance in seedlings of five important tree species in Tarai region of Uttarakhand. Int J Trop Ecol 49:43–52

    Google Scholar 

  • Roose E, Ndayzigiye F (1997) Agroforestry, water and soil fertility management to fight erosion in tropical mountains of Rowana. Soil Technol 11:109–119

    Article  Google Scholar 

  • Sanginga N, Zapata F, Danso SKA, Bowen GD (1989) Effect of successive cutting on nodulation and nitrogen fixation of Leucaena leucocephala using 15N dilution and the difference methods. In: Proceedings of the Eleventh International Plant Nutrition Colloquium, Wageningen, The Netherlands, 30 July–4 August 1989

    Google Scholar 

  • Shelton HM, Brewbaker JL (1994) Leucaena leucocephala – the most widely used forage tree legume. In: Gutteridge RC, Shelton HM (eds) Forage tree legumes in tropical agriculture. CAB International, London, pp 15–29

    Google Scholar 

  • Shelton HM, Dalzell S (2007) Production, economic and environmental benefits of leucaena pastures. Trop Grasslands 41:174–190

    Google Scholar 

  • Soedarjo M, Borthakur D (1996a) Mimosine produced by the tree-legume Leucaena provides growth advantages to some Rhizobium strains that utilize it as a source of carbon and nitrogen. Plant Soil 186:87–92

    Article  CAS  Google Scholar 

  • Soedarjo M, Borthakur D (1996b) Simple procedures to remove mimosine from young leaves, pods and seeds of Leucaena leucocephala used as food. Int J Food Sci Technol 31:97–103

    Article  CAS  Google Scholar 

  • Soedarjo M, Borthakur D (1998) Mimosine, a toxin produced by the tree-legume Leucaena provides a nodulation competition advantage to mimosine-degrading Rhizobium strains. Soil Biol Biochem 30:1605–1613

    Article  CAS  Google Scholar 

  • Soedarjo M, Hemscheidt TK, Borthakur D (1994) Mimosine, a toxin present in the tree legume Leucaena, induces a mimosine-degrading enzyme activity in some strains of Rhizobium. Appl Environ Microbiol 60:4268–4272

    CAS  PubMed  PubMed Central  Google Scholar 

  • Somasegaran PS, Martin RB (1986) Symbiotic characteristics and Rhizobium requirements of a Leucaena leucocephala × Leucaena diversifolia hybrid and its parental genotypes. Appl Environ Microbiol 52:1422–1424

    CAS  PubMed  PubMed Central  Google Scholar 

  • Sorensson CT (1993) Production and characterization of interspecific hybrids of the tropical tree Leucaena (Leguminosae: Mimosoideae). Dissertation, University of Hawaii, Honolulu

    Google Scholar 

  • Sorensson CT, Brewbaker JL (1984) Newly introduced psyllid in Hawaii injurious to Leucaena. Leucaena Res Rep 5:91–93

    Google Scholar 

  • Sorensson CT, Brewbaker JL (1994) Interspecific compatibility among 15 Leucaena species (Leguminosae: Mimosoideae) via artificial hybridizations. Am J Bot 81:240–247

    Article  Google Scholar 

  • Sun WG (1996) Genetic improvement of Leucaena and Acacia koa. Dissertation, University of Hawaii, Honolulu

    Google Scholar 

  • Takahashi M, Ripperton JC (1949) Koa haloe (Leucaena glauca) Its establishment, culture and utilization as a forage crop. Bulletin 100 University of Hawaii Agricultural Experiment Station

    Google Scholar 

  • Tangendjaja B, Lowry JB, Wills RBH (1986) Changes in mimosine, phenol, protein and fibre content of Leucaena leucocephala leaf during growth and development. Aust J Exp Agric 26:315–317

    Article  CAS  Google Scholar 

  • Tawata S, Fukuta M, Xuan TD, Farah Deba F (2008) Total utilization of tropical plants Leucaena leucocephala and Alpinia zerumbet. J Pestic Sci 33:40–43

    Article  CAS  Google Scholar 

  • Wheeler RA, Brewbaker JL (1988) Leucaena research for Hawaiian forest and rangeland applications. Trans West Sect WildLife Soc 24:94–97

    Google Scholar 

  • Wheeler RA, Norton BW, Shelton HM (1995) Condensed tannins in Leucaena species and hybrids and implications for nutritive value. In: Shelton HM, Piggin CM, Brewbaker JL (eds) Leucaena – opportunities and limitations. ACIAR, Canberra, pp 112–118

    Google Scholar 

  • Xuan TD, Tawata S, Khanh TD (2013) Herbicidal activity of mimosine and its derivatives. In: Price AJ, Kelton JA (eds) Herbicides-advances in research, agricultural and biological sciences. Intech. Chapter 15, Rijeka, pp 299–312

    Google Scholar 

  • Yost RS, Fox RL (1979) Contribution of mycorrhizae to P nutrition of crops growing on an oxisol. Agron J 71:903–908

    Article  CAS  Google Scholar 

  • Young CC (1990) Effects of phosphorus-solubilizing bacteria and vesicular-arbuscular mycorrhizal fungi on the growth of tree species in subtropical-tropical soils. Soil Sci Plant Nutr 36:225–231

    Article  Google Scholar 

  • Zarate PS (1984) Taxonomic revision of the genus Leucaena from Mexico. Bul Intl Group Study Mimosoideae 12:24–34

    Google Scholar 

  • J. L. Brewbaker, (1975) Registration of Hawaiian Giant K8 Leucaena1 (Reg. No. 16). Crop Science 15 (6):885

    Article  Google Scholar 

  • Stephen A. Harris, (1995) Systematics and randomly amplified polymorphic DNA in the genusLeucaena (Leguminosae, Mimosoideae). Plant Systematics and Evolution 197 (1-4):195-208

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This work was supported by the USDA NIFA Hatch project HA05029-H, managed by CTAHR, University of Hawaii at Manoa, Honolulu. Authors would like to thank Dr. James Brewbaker for the useful discussion.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Dulal Borthakur .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Ishihara, K.L., Honda, M.D.H., Bageel, A., Borthakur, D. (2018). Leucaena leucocephala: A Leguminous Tree Suitable for Eroded Habitats of Hawaiian Islands. In: Dagar, J., Singh, A. (eds) Ravine Lands: Greening for Livelihood and Environmental Security. Springer, Singapore. https://doi.org/10.1007/978-981-10-8043-2_18

Download citation

Publish with us

Policies and ethics