Success Factors for Implementing Phosphorus Recycling Technologies

  • Willem SchipperEmail author


Currently available phosphate recycling technologies are compared and rated on the basis of eight criteria. Expectations and predictions regarding implementation are given. Sewage sludge ash-based technologies are identified as overall most promising in terms of recycling efficiency and compatibility with existing industries.


Phosphorus recycling efficiency Compatibility Success factors Cost and benefit 



The author cordially thanks Christian Kabbe of Kompetenzzentrum Wasser for many useful discussions in shaping this manuscript.


  1. Arla (2017) Arlagarden® quality assurance programme, Version 5.2, January 2017Google Scholar
  2. Buckwell A, Nadeau E (2016) Nutrient Recovery and Reuse (NRR) in European agriculture. A review of the issues, opportunities and actions. RISE Foundation, BrusselsGoogle Scholar
  3. Cordell D, Drangert JO, White S (2009) Global Environ Chang 19:292–305CrossRefGoogle Scholar
  4. Cummins CC (2014) Daedalus 143(4):9–20CrossRefGoogle Scholar
  5. De Ruiter R (2014) The EcoPhos technology to close the P cycle and to safeguard the world’s food chain. Abwasser–Phosphor–Dünger-Workshop inclusive Fachgespräch zum UFOPLAN-Projekt Klärschlammaschemonitoring, BerlinGoogle Scholar
  6. Edixhoven JD, Gupta J, Savenije HHG (2013) Earth Syst Dynam Discuss 4:1005–1034CrossRefGoogle Scholar
  7. Final Report on Organic Fertilizers and Soil Conditioners (II) (2016) Expert group for technical advice on organic production, BrusselsGoogle Scholar
  8. Heinzmann B, Lengemann A (2013) Vom Betriebsproblem zum Berliner Verfahren – Phosphorrückgewinnung als Magnesiumammoniumphosphat in der Kläranlage Wassmannsdorf (From operational trouble to the Berlin P recovery process implemented at WWTP Wassmannsdorf). Proceedings 8th Klärschlammtage, Fulda, 4–6 June 2013Google Scholar
  9. Hermann L (2013) Phosphate-containing waste ash process for producing mineral fertiliser. Proceedings International Fertiliser Society, 732Google Scholar
  10. Herzel H, Krüger O, Hermann L, Adam C (2016) Sci Total Env 542 B:1136–1143CrossRefGoogle Scholar
  11. Hukari S, Nättorp A, Kabbe C (2015) Phosphorus recycling now! P-REX policy brief,
  12. Hukari S, Hermann L, Nättorp A (2016) From wastewater to fertilisers – technical overview and critical review of European legislation governing phosphorus recycling. Sci Total Environ, B 542:1127–1135CrossRefGoogle Scholar
  13. Kabbe C (2013) Sustainable sewage sludge management fostering phosphorus recovery. Bluefacts 2013:36–41Google Scholar
  14. Kabbe C, Remy C, Kraus F (2015) Review of promising methods for phosphorus recovery and recycling from wastewater. In: Proceedings International Fertiliser Society, p 763Google Scholar
  15. Koppelaar RHEM, Weikard H (2013) Global Environ Chang 23:1454–1466CrossRefGoogle Scholar
  16. Kraus F, Kabbe C, Remy C, Lesjean B (2016) KA Korrespondenz Abwasser, Abfall 6:528–537Google Scholar
  17. Krüger O, Adam C (2014) Monitoring von Klärschlammmonoverbrennungsaschen hinsichtlich ihrer Zusammensetzung zur Ermittlung ihrer Rohstoffrückgewinnungspotentiale und zur Erstellung von Referenzmaterial für die Überwachungsanalytik (Sewage sludge ash monitoring for their material recovery potential and to produce references materials for official monitoring routines), UBA Texte 49/2014. Dessau-RoßlauGoogle Scholar
  18. Langeveld CP ten Wolde KW (2013) Proceedings of the international fertiliser Society, 727Google Scholar
  19. Leip A, Weiss F, Lesschen JP, Westhoek HJ (2015) Agric Sc 152:20–33CrossRefGoogle Scholar
  20. Nutrient Management Solutions, WEFTEC (2016) (provided by struvite operator Ostara)
  21. Ohtake H, Okano K (2015) Development and implementation of technologies for recycling phosphorus: in secondary resources in Japan. Global Environ Res 19:49–65Google Scholar
  22. Rak A, Lebek M (2016) Clean technology for P-recycling to phosphoric acid: Remondis TetraPhos®. ESPP – phosphorus stewardship in industrial applications, BrusselsGoogle Scholar
  23. Schnee R, Stössel E (2014) Extraktion von Phosphaten mit Kohlendioxid (Extraction of Phosphates with carbon dioxide), Abwasser–Phosphor–Dünger-Workshop inclusive Fachgespräch zum UFOPLAN-Projekt Klärschlammaschemonitoring, Berlin, 28–29 January 2014Google Scholar
  24. Schoumans OF, Bouraoui F, Kabbe C, Oenema O, van Dijk KC (2015) Phosphorus management in Europe in a changing world. Ambio 44:180–192CrossRefGoogle Scholar
  25. Sutton MA, Howard CM, Erisman JW, Billen G, Bleeker A, Grennfelt P, van Grinsven H, Grizzetti B (eds) (2011) The European nitrogen assessment. Cambridge University Press, CambridgeGoogle Scholar
  26. Technical factsheets at (n.d.) Berlin Centre of Competence for Water, BerlinGoogle Scholar
  27. Van Kauwenbergh SJ (2010) World phosphate rock reserves and resources. IFDC, Muscle ShoalsGoogle Scholar
  28. Waste Ordinance (2015) (Verordnung über die Vermeidung und die Entsorgung von Abfällen, Der Schweizerische Bundesrat.
  29. Wellmer FW, Scholz RW (2016) Miner Econ.
  30. Withers PJA, Elser JJ, Hilton J, Ohtake H, Schipper WJ, van Dijk KC (2015) Green Chem 17:2087–2099CrossRefGoogle Scholar
  31. Wragge V (2015) Product quality and fertiliser value of recovered products, presented at the P-Rex conference in Amsterdam, see
  32. Zeit (2001) Frisch und giftig auf den Tisch (fresh and toxic on the table). Die Zeit Archiv Jahrgang 2001(6):1–4Google Scholar

Copyright information

© Springer Nature Singapore Pte Ltd. 2019

Authors and Affiliations

  1. 1.Willem Schipper ConsultingMiddelburgThe Netherlands

Personalised recommendations