Advertisement

Life Cycle Assessment of Processes for P Recycling

  • Christian RemyEmail author
  • Fabian Kraus
Chapter

Abstract

Recent developments and innovations in the field of P recovery and recycling from municipal sewage sludge claim to provide a sustainable and more efficient alternative to the traditional sludge valorization in agriculture. The method of life cycle assessment (LCA) offers a detailed analysis of the potential environmental impacts associated with different technologies, but it needs to be based on sound definitions and validated input data, not only for the specific technologies but also for the methodological framework. Since the relevant ISO standards 14040/44 provide methodological guidance without specifically fixed definitions, the application of LCA leaves a lot of potential for interpretation of results. Within the European research project P-REX, a methodological framework was developed to assess various available technologies for P recovery from sewage sludge, sludge liquor or incineration ash. Decisive definitions are the setting of adequate system boundaries and functional unit, the selection of LCA indicators and their interpretation. The following chapter discusses important definitions of the LCA methodology and provides recommendations towards a consolidated approach for future LCA studies in the field of P recovery from sewage sludge.

Keywords

Life cycle assessment Phosphorus recovery Sewage sludge Environmental impact assessment 

References

  1. Corominas L, Foley J, Guest JS, Hospido A, Larsen HF, Morera S, Shaw A (2013) Life cycle assessment applied to wastewater treatment: state of the art. Water Res 47 (15):5480–5492. S0043-1354(13)00540-X [pii]  https://doi.org/10.1016/j.watres.2013.06.049 CrossRefGoogle Scholar
  2. Ecoinvent (2014) Ecoinvent data v3.1, ecoinvent reports no. 1–26. Swiss Center for Life Cycle Inventories, www.ecoinvent.org
  3. Frischknecht R, Steiner R, Jungbluth N (2008) Ökobilanzen: Methode der ökologischen Knappheit – Ökofaktoren 2006 (Life Cycle Assessment: Method of ecological scarcity – eco-factors 2006). Öbu – Netzwerk für nachhaltiges Wirtschaften, ZurichGoogle Scholar
  4. Goedkoop MJ, Heijungs R, Huijbregts MAJ, De Schryver A, Struijs J, Van Zelm R (2009) ReCiPe 2008, a life cycle impact assessment method which comprises harmonised category indicators at the midpoint and the endpoint level; first edition report I: characterization. http://www.lcia-recipe.net
  5. Hauschild MZ, Goedkoop M, Guinée J, Heijungs R, Huijbregts M, Jolliet O, Margni M, De Schryver A, Humbert S, Laurent A, Sala S, Pant R (2013) Identifying best existing practice for characterization modeling in life cycle impact assessment. Int J Life Cycle Assess 18(3):683–697.  https://doi.org/10.1007/s11367-012-0489-5 CrossRefGoogle Scholar
  6. IPCC (2014) Climate change 2014: synthesis report. Contribution of Working Groups I, II and III to the fifth assessment report of the Intergovernmental Panel on Climate Change IPCC, Geneva, SwitzerlandGoogle Scholar
  7. ISO 14040 (2006) Environmental management – life cycle assessment – principles and framework. International Standardisation Organisation, GenevaGoogle Scholar
  8. ISO 14044 (2006) Environmental management – life cycle assessment – requirements and guidelines. International Standardisation Organisation, GenevaGoogle Scholar
  9. Klöpffer W, Grahl B (2009) Ökobilanz (LCA): Ein Leitfaden für Ausbildung und Beruf (Life Cycle Assessment: A guide for education and practice). Wiley-VCH, WeinheimGoogle Scholar
  10. Milieu (2010) Environmental, economic and social impacts of the use of sewage sludge on land. Final report part I: overview report. Prepared for the European Commission, DG Environment under Study Contract DG ENV.G.4/ETU/2008/0076r. Brussels, BelgiumGoogle Scholar
  11. Remy C, Jossa P (2015) Comparative life cycle assessment of treatment-recovery paths (D9.2). KWB, www.p-rex.eu
  12. Rosenbaum RK, Bachmann TM, Gold LS, Huijbregts MAJ, Jolliet O, Juraske R, Koehler A, Larsen HF, MacLeod M, Margni M, McKone TE, Payet J, Schuhmacher M, van de Meent D, Hauschild MZ (2008) USEtox-the UNEP-SETAC toxicity model: recommended characterisation factors for human toxicity and freshwater ecotoxicity in life cycle impact assessment. Int J Life Cycle Assess 13(7):532–546. https://doi.org/10.1007/s11367-008-0038-4CrossRefGoogle Scholar
  13. Sala S, Benini L, Mancini L, Pant R (2015) Integrated assessment of environmental impact of Europe in 2010: data sources and extrapolation strategies for calculating normalisation factors. Int J Life Cycle Assess 20(11):1568–1585.  https://doi.org/10.1007/s11367-015-0958-8 CrossRefGoogle Scholar
  14. Sleeswijk AW, van Oers LFCM, Guinée JB, Struijs J, Huijbregts MAJ (2008) Normalisation in product life cycle assessment: an LCA of the global and European economic systems in the year 2000. Sci Total Environ 390(1):227–240.  https://doi.org/10.1016/j.scitotenv.2007.09.040 CrossRefGoogle Scholar
  15. van Dijk KC, Lesschen JP, Oenema O (2016) Phosphorus flows and balances of the European Union Member States. Sci Total Environ 542:1078–1093.  https://doi.org/10.1016/j.scitotenv.2015.08.048 CrossRefGoogle Scholar
  16. VDI (2012) VDI-Richtlinie 4600: 2012-01: Kumulierter Energieaufwand – Begriffe, Berechnungsmethoden (VDI guideline 4600: 2012-01: cumulative energy demand – terms, definitions, methods of calculation). Beuth Verlag, BerlinGoogle Scholar
  17. Yoshida H, Christensen TH, Scheutz C (2013) Life cycle assessment of sewage sludge management: a review. Waste Manag Res 31(11):1083–1101.  https://doi.org/10.1177/0734242X13504446 CrossRefGoogle Scholar

Copyright information

© Springer Nature Singapore Pte Ltd. 2019

Authors and Affiliations

  1. 1.Berlin Centre of Competence for WaterBerlinGermany

Personalised recommendations