Advertisement

Phosphate Recovery Using Amorphous Calcium Silicate Hydrates

  • K. OkanoEmail author
  • H. Ohtake
  • M. Kunisada
  • H. Takano
  • M. Toda
Chapter

Abstract

Amorphous calcium silicate hydrates (A-CSHs) can be chemically synthesized using abundantly available, inexpensive materials such as siliceous shale and calcium hydroxide. A-CSHs can serve as a bifunctional adsorption-aggregation agent for phosphate (Pi) recovery from aqueous solution. A-CSHs can also be prepared by soaking recyclable calcium silicates such as concrete sludge and steelmaking slag in a dilute hydrochloric acid solution. Since A-CSHs show high Pi removability, settleability, and filterability, they have the potential to offer a simple, cost-effective option to the recovery of Pi from Pi-rich waste streams. On-site experiments using a mobile, pilot-scale plant have showed that A-CSHs can recover approximately 80% Pi from a Pi-rich sidestream in a wastewater treatment plant. This chapter describes a simple process for Pi recovery from aqueous solution using A-CSHs as a bifunctional adsorption-aggregation agent.

Keywords

Amorphous calcium silicate hydrates Bifunctional adsorption-aggregation agent Mobile pilot-scale plant By-product phosphate fertilizer 

References

  1. Andersen MD, Jakobsen HJ, Skibsted J (2003) Incorporation of aluminum in the calcium silicate hydrate (C–S–H) of hydrated Portland cements: a high-field 27Al and 29Si MAS NMR investigation. Inorg Chem 42:2280–2287CrossRefGoogle Scholar
  2. Aono Y, Matsushita F, Shibata S, Hama Y (2007) Nano-structural changes of C-S-H in hardened cement paste during drying at 50°C. J Adv Concr Technol 5:313–323CrossRefGoogle Scholar
  3. Berg U, Donnert D, Ehbrecht A, Bumiller W, Kusche I, Weidler PG, Nüesch R (2005) “Active filtration” for the elimination and recovery of phosphorus from waste water. Colloid Surf A 265:141–148CrossRefGoogle Scholar
  4. Chen JJ, Thomas JJ, Taylor HFW, Jennings HM (2004) Solubility and structure of calcium silicate hydrate. Cem Concr Res 34:1499–1519CrossRefGoogle Scholar
  5. Chen X, Kong H, Wu D, Wang X, Lin Y (2009) Phosphate removal and recovery through crystallization of hydroxyapatite using xonotlite as seed crystal. J Environ Sci 21:575–580CrossRefGoogle Scholar
  6. Cong XD, Kirkpatrick RJ (1993) 29Si MAS NMR spectroscopic investigation of alkali silica reaction products gels. Cement Concr Res 23:811–823CrossRefGoogle Scholar
  7. Guan W, Ji F, Chen Q, Yan P, Pei L (2013) Synthesis and enhanced phosphate recovery property of porous calcium silicate hydrate using polyethylene glycol as pore-generation agent. Materials 6:2846–2861CrossRefGoogle Scholar
  8. Houston JR, Maxwell RS, Carroll SA (2009) Transformation of meta-stable calcium silicate hydrates to tobermorite: reaction kinetics and molecular structure from XRD and NMR spectroscopy. Geochem Trans 10:1CrossRefGoogle Scholar
  9. Iizuka A, Sasaki T, Hongo T, Honma M, Hayakawa Y, Yamasaki A, Yanagisawa Y (2012) Phosphorus adsorbent derived from concrete sludge (PAdeCS) and its phosphorus recovery performance. Ind Eng Chem Res 51:11266–11273CrossRefGoogle Scholar
  10. Johnsson MSA, Nancollas GH (1992) The role of brushite and octacalcium phosphate in apatite formation. Crit Rev Oral Biol M 3:61–82CrossRefGoogle Scholar
  11. Matsubae K, Webeck E, Nansai K, Nakajima K, Tanaka M, Nagasaka T (2015) Hidden phosphorus flows related with non-agriculture industrial activities: a focus on steelmaking and metal surface treatment. Resour Conser Recy 105:360–367CrossRefGoogle Scholar
  12. Ohtake H, Okano K, Kunisada M, Takano H, Toda M (2018) Simple technology for recycling phosphate from wastewater to farmland in rural areas. Ambio 47(S1):83–92CrossRefGoogle Scholar
  13. Okano K, Uemoto M, Kagami J, Miura K, Aketo T, Toda M, Honda K, Ohtake H (2013) Novel technique for phosphorus recovery from aqueous solutions using amorphous calcium silicate hydrates (A-CSHs). Water Res 47:2251–2259CrossRefGoogle Scholar
  14. Okano K, Miyamaru S, Kitao A, Takano H, Aketo T, Toda M, Honda K, Ohtake H (2015) Amorphous calcium silicate hydrates and their possible mechanism for recovering phosphate from wastewater. Sep Purif Technol 144:63–69CrossRefGoogle Scholar
  15. Okano K, Miyamaru S, Yamamoto Y, Kunisada M, Takano H, Toda M, Honda K, Ohtake H (2016a) A mobile pilot-scale plant for in situ demonstration of phosphorus recovery from wastewater using amorphous calcium silicate hydrates. Sep Purif Technol 170:116–121CrossRefGoogle Scholar
  16. Okano K, Yamamoto Y, Takano H, Aketo T, Honda K, Ohtake H (2016b) A simple technology for phosphorus recovery using acid-treated concrete sludge. Sep Purif Technol 165:173–178CrossRefGoogle Scholar
  17. Shaw S, Clark SM, Henderson CMB (2000) Hydrothermal formation of the calcium silicate hydrates, tobermorite (Ca5Si6O16(OH)2·4H2O) and xonotlite (Ca6Si6O17(OH)2): an in situ synchrotron study. Chem Geol 167:129–140CrossRefGoogle Scholar
  18. Tsunashima Y, Iizuka A, Akimoto J, Hongo T, Yamasaki A (2012) Preparation of sorbents containing ettringite phase from concrete sludge and their performance in removing borate and fluoride ions from waste water. Chem Eng J 200–202:338–343CrossRefGoogle Scholar
  19. Zahn D (2004) Mechanisms of calcium phosphate ion association in aqueous solution. Z Anorg Allg Chem 630:1507–1511CrossRefGoogle Scholar

Copyright information

© Springer Nature Singapore Pte Ltd. 2019

Authors and Affiliations

  • K. Okano
    • 1
    Email author
  • H. Ohtake
    • 2
  • M. Kunisada
    • 3
  • H. Takano
    • 4
  • M. Toda
    • 5
  1. 1.Department of Biotechnology, Graduate School of EngineeringOsaka UniversitySuitaJapan
  2. 2.Phosphorus Atlas Research InstituteWaseda UniversityTokyoJapan
  3. 3.Mikuni Pharmaceutical Industrial Co., Ltd.ToyonakaJapan
  4. 4.Research & Development CenterTaiheiyo Cement Co.SakuraJapan
  5. 5.Research & Development LaboratoryOnoda Chemical Industry Co., Ltd.TokyoJapan

Personalised recommendations