Outotec Manure, Slurry, and Sludge Processing Technology

  • Ludwig HermannEmail author
  • Tanja Schaaf


Relevant waste flows like sewage sludge, farmyard manure, digestion residues, and humid residues from food and feed production are known for food safety issues and for environmental and waste management problems. If used as a resource for crop nutrients and soil fertility, distribution is the main issue: urbanization and intensive livestock farming produce mass flows requiring extended cropland typically not available in the densely populated regions of our planet. Thermal conversion is an acknowledged option for concentration and recycling of mineral residues including phosphates, but the typical moisture content of >70 wt% makes it difficult to yield relevant surplus energy flows. This challenge is approached by increasing the efficiency of drying and replacing combustion by gasification, in essence by making effective use of the hydrogen (H2) molecules of water in the process chain. Outotec’s technology approach aims at keeping H2 molecules in the loop and eventually using them in the form of a hydrogen-rich gas in a variety of energy and biochemical applications. The approach is intrinsically circular, and the related processes – closed-loop steam drying and steam gasification – are well known but have not been applied to the waste flows and in the configuration as outlined in this book. If successfully implemented, waste flows in the order of 1–1.5 billion cubic meters in the EU28 may be recycled to a relevant building block of a future hydrogen economy with a vast array of applications in the energy and biochemistry sector.


Sewage sludge Farmyard manure Digestion residues Slurries Drying Gasification Product gas Hydrogen Nutrient recovery Phosphate recycling Energy conversion 


  1. Beckmann K (2015) New process to gasify sludge and slurry may turn farmers into energy producers. Energypost:14–10Google Scholar
  2. Bundesministerium für Umwelt, Naturschutz und Reaktorsicherheit im Einvernehmen mit dem Bundesministerium für Verbraucherschutz (2003) Ernährung und Landwirtschaft, Verordnung über das Inverkehrbringen von Düngemitteln, Bodenhilfsstoffen, Kultursubstraten und Pflanzenhilfsmitteln (Düngemittelverordnung – DüMV), Bundesrecht, Bundesrepublik Deutschland, Bonn, 26.11Google Scholar
  3. Hermann L (2011) How energy from livestock manure can reduce eutrophication, Ecoregion Perspectives “Sustainable agriculture in the Baltic Sea Region in times of peak phosphorous and global change”. pp 58–62Google Scholar
  4. Hermann L (2014) A review of innovations in mineral fertilizer production. 16th World Fertilizer Congress of CIEC, Rio de JaneiroGoogle Scholar
  5. Hermann L, Schaaf T Johansson R (2017) EIT InnoEnergy. KIC InnoEnergy SE, 28 07. [Online]. Available: Accessed 28 July 2017
  6. Joint EU Research Project P-REX (2012–2015) P-REX. 05 04 2016. [Online]. Available
  7. Kelly MS, Dworjanyn S (2008) The potential of marine biomass for anaerobic biogas production. Scottish Association for Marine Science, ObanGoogle Scholar
  8. Kern S, Pfeifer C, Hofbauer H (2013) Gasification of wood in a dual fluidized bed gasifier: influence of fuel feeding on process performance. Chem Eng Sci 90:284–298. CrossRefGoogle Scholar
  9. Kuba M, He H, Kirnbauer F, Skoglund N, Boström D, Öhman M, Hofbauer H (2016a) Mechanism of layer formation on olivine bed particles in industrial-scale dual fluid bed Gasi fi cation of wood. Energy Fuel 30:7410–7418. CrossRefGoogle Scholar
  10. Ma J, Kennedy N, Yorgey G, Frear C (2013) Review of emerging nutrient recovery technologies for farm-based anaerobic digesters and other renewable energy systems. Washington State University, SeattleGoogle Scholar
  11. Potocnik J (2017) Circular change. Circular Change Platform, 31 07. [Online]. Available Accessed 31 July 2017
  12. Schoumans OF, Bouraoui F, Kabbe C, Oenema O, van Dijk KC (2015) Phosphorus management in Europe in a changing world. Ambio 44(Suppl. 2):180–192. SpringerCrossRefGoogle Scholar
  13. Schweitzer D, Stack V, Gredinger A, Lorenz M, Dieter H, Scheffknecht G (2014) Dual fluidized bed steam gasification of dried sewage sludge, Fifth International Symposium on Energy from Biomass and Waste, VeniceGoogle Scholar
  14. Skoglund N (2014) Ash chemistry and fuel design focusing on combustion of phosphorus-rich biomass (Thesis), Umea: Umea University, Thermochemical Energy Conversion LaboratoryGoogle Scholar
  15. Skoglund N, Grimm A, Öhman M, Boström D (2014) Combustion of biosolids in a bubbling fluidized bed, part 1: main ash-forming elements and ash distribution with a focus on phosphorus. Energy Fuel 28:1183–1190. CrossRefGoogle Scholar
  16. Thorbjörnsson H (2017) “Gobigas,” Göteborg Energi, 28 07. [Online]. Available Accessed 28 July 2017
  17. Thornton PK (2010) Livestock production: recent trends, future prospects. Philos Trans B 365(1554):2853–2867. The Royal Society PublishingCrossRefGoogle Scholar
  18. UMWELT-MATERIALIEN Nr (2004) 181 – Abfall, “Klärschlammentsorgung in der Schweiz – Mengen- und Kapazitätserhebung,” BUWAL Bundesamt für Umwelt. Wald und Landschaft, BernGoogle Scholar
  19. Wiechmann B, Dienemann C, Kabbe C, Brandt S, Vogel I, Roskosch A (2013) Sewage sludge management in Germany. Umweltbundesamt (UBA), Dessau-RoßlauGoogle Scholar
  20. Ylivainio K, Albihn A, Bloem E, Elving J, Hermann L, Lehmann L, Schaaf T, Schick J, Turtola E (2017) The final publishable summary report. BONUS PROMISE PROJECT 1.4.2014–31.3.2017, HelsinkiGoogle Scholar

Copyright information

© Springer Nature Singapore Pte Ltd. 2019

Authors and Affiliations

  1. 1.Outotec GmbH & Co. KGOberurselGermany

Personalised recommendations