Skip to main content

Hydrothermal Process for Extracting Phosphate from Animal Manure

  • Chapter
  • First Online:
Phosphorus Recovery and Recycling

Abstract

To mitigate the risk of the secured supply of phosphate rock, increasing attention has been paid to phosphorus (P) recovery from untapped secondary resources. Animal manure is one of the most important secondary resources for P in light of the large quantity and high P content. This chapter describes the hydrothermal technology to efficiently extract P from animal manure. Laboratory experiments showed that the hydrothermal treatment of pig manure at 180 °C under the oxygen partial pressure of 1 MPa could increase the P extractability by approximately 150% compared to the untreated control. Under this condition, the concentration of P in the eluate reached up to 114 mg/L. The kinetics of extracting P from pig manure by the hydrothermal technology could be given by the first-order reaction equation.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 129.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Ajiboye B, Akinremi OO, Racz GJ (2004) Laboratory characterization of phosphorus in fresh and oven-dried organic amendments. J Environ Qual 33(3):1062–1069

    Article  CAS  Google Scholar 

  • Angst TE, Sohi SP (2013) Establishing release dynamics for plant nutrients from biochar. Glob Change Biol Bioenergy 5(2):221–226

    Article  CAS  Google Scholar 

  • Azuara M, Kersten SRA, Kootstra AMJ (2013) Recycling phosphorus by fast pyrolysis of pig manure: concentration and extraction of phosphorus combined with formation of value-added pyrolysis products. Biomass Bioenergy 49(2):171–180

    Article  CAS  Google Scholar 

  • Cao W, Cao C, Guo L, Jin H, Dargusch M, Bernhardt D et al (2016) Hydrogen production from supercritical water gasification of chicken manure. Int J Hydrog Energy 41(48):22722–22731

    Article  CAS  Google Scholar 

  • Catalkopru AK, Kantarli IC, Yanik J (2016) Effects of spent liquor recirculation in hydrothermal carbonization. Bioresour Technol 226:89

    Article  CAS  Google Scholar 

  • Dael MV, Márquez N, Reumerman P, Pelkmans L, Kuppens T, Passel SV (2014) Development and techno-economic evaluation of a biorefinery based on biomass (waste) streams – case study in the netherlands. Biofuels Bioprod Biorefin 8(5):635–644

    Article  CAS  Google Scholar 

  • Dai L, Tan F, Bo W, He M, Wang W, Tang X et al (2015) Immobilization of phosphorus in cow manure during hydrothermal carbonization. J Environ Manag 157:49–53

    Article  CAS  Google Scholar 

  • Dou Z, Toth JD, Galligan DT, Ramberg CFJ, Ferguson JD (2000) Laboratory procedures for characterizing manure phosphorus. J Environ Qual 29(2):508–514

    Article  CAS  Google Scholar 

  • Eftaxias A, Font J, Fortuny A, Giralt J, Fabregat A, Stüber F (2014) Kinetic modelling of catalytic wet air oxidation of phenol by simulated annealing. Int J Chem React Eng 33(1):175–190

    Google Scholar 

  • Ekpo U, Ross AB, Camargo-Valero MA, Fletcher LA (2016) Influence of ph on hydrothermal treatment of swine manure: impact on extraction of nitrogen and phosphorus in process water. Bioresour Technol 214:637–644

    Article  CAS  Google Scholar 

  • Fang C, Tao Z, Jiang R, Ohtake H (2016) Phosphate enhance recovery from wastewater by mechanism analysis and optimization of struvite settleability in fluidized bed reactor. Sci Rep 6:32215

    Article  CAS  Google Scholar 

  • FAO (2015) FAOSTAT. Available online at http://www.fao.org/statistics/en/. Verified on 20 Sept 2016

  • Ghanim BM, Kwapinski W, Leahy JJ (2017) Hydrothermal carbonisation of poultry litter: effects of initial ph on yields and chemical properties of hydrochars. Bioresour Technol 238:78–85

    Article  CAS  Google Scholar 

  • He Z, Honeycutt CW (2001) Enzymatic characterization of organic phosphorus in animal manure. J Environ Qual 30(5):1685–1692

    Article  CAS  Google Scholar 

  • He Z, Griffin TS, Honeycutt CW (2004a) Phosphorus distribution in dairy manures. J Environ Qual 33(4):1528–1534

    Article  CAS  Google Scholar 

  • He Z, Griffin TS, Honeycutt CW (2004b) Enzymatic hydrolysis of organic phosphorus in swine manure and soil. J Environ Qual 33(1):367–372

    Article  CAS  Google Scholar 

  • Heilmann SM, Molde JS, Timler JG, Wood BM, Mikula AL, Vozhdayev GV et al (2014) Phosphorus reclamation through hydrothermal carbonization of animal manures. Environ Sci Technol 48(17):10323–10329

    Article  CAS  Google Scholar 

  • Kauwenbergh SJV, Stewart M, Mikkelsen R (2013) World reserves of phosphate rock. a dynamic and unfolding story. Better Crops Plant Food 97:18–20

    Google Scholar 

  • Kruse A (2008) Supercritical water gasification. Biofuels Bioprod Biorefin 2(5):415–437

    Article  CAS  Google Scholar 

  • Lehmann J, Joseph S (2015) Biochar for environmental management. Sci Technol Earthscan 25(1):15801–15811(11)

    Google Scholar 

  • Li G, Li H, Leffelaar PA, Shen J, Zhang F (2014) Characterization of phosphorus in animal manures collected from three (dairy, swine, and broiler) farms in China. PLoS One 9(7):e102698

    Article  CAS  Google Scholar 

  • Liu Y, Yao S, Wang Y, Lu H, Brar SK, Yang S (2017) Bio- and hydrochars from rice straw and pig manure: inter-comparison. Bioresour Technol 235:332–337

    Article  CAS  Google Scholar 

  • Mcdowell RW, Stewart I (2005) Phosphorus in fresh and dry dung of grazing dairy cattle, deer, and sheep: sequential fraction and phosphorus-31 nuclear magnetic resonance analyses. J Environ Qual 34(2):598–607

    Article  CAS  Google Scholar 

  • Modell M (1985) Gasification and liquefaction of forest products in supercritical water. Fundamentals of thermochemical biomass conversion. Springer, Netherlands

    Google Scholar 

  • Monreal CM, Schnitzer MI (2012) Bio-oil production from poultry litter: potential energy, environmental and chemical opportunities. Applied research of animal manure. Challenges and opportunities beyond the adverse environmental concerns

    Google Scholar 

  • Pagliari PH, Laboski CAM (2012) Investigation of the inorganic and organic phosphorus forms in animal manure. J Environ Qual 41(3):901–910

    Article  CAS  Google Scholar 

  • Pagliari PH, Laboski CAM (2013) Dairy manure treatment effects on manure phosphorus fractionation and changes in soil test phosphorus. Biol Fertil Soils 49(8):987–999

    Article  Google Scholar 

  • Pagliari P, Rosen C, Strock J, Russelle M (2010) Phosphorus availability and early corn growth response in soil amended with turkey manure ash. Commun Soil Sci Plant Anal 41(11):1369–1382

    Article  CAS  Google Scholar 

  • Sharpley A, Moyer B (2000) Phosphorus forms in manure and compost and their release during simulated rainfall. J Environ Qual 29(6):1462–1469

    Article  CAS  Google Scholar 

  • Szogi AA, Vanotti MB (2009) Prospects for phosphorus recovery from poultry litter. Bioresour Technol 100(22):5461–5465

    Article  CAS  Google Scholar 

  • Tembhekar PD, Padoley KV, Mudliar SL, Mudliar SN (2015) Kinetics of wet air oxidation pretreatment and biodegradability enhancement of a complex industrial wastewater. J Environ Chem Eng 3(1):339–348

    Article  CAS  Google Scholar 

  • Theegala CS, Midgett JS (2012) Hydrothermal liquefaction of separated dairy manure for production of bio-oils with simultaneous waste treatment. Bioresour Technol 107(2):456–463

    Article  CAS  Google Scholar 

  • Toufiq Reza M, Freitas A, Yang X, Hiibel S, Lin H, Coronella CJ (2016) Hydrothermal carbonization (htc) of cow manure: carbon and nitrogen distributions in htc products. Environ Prog Sustain Energy 35(4):1002–1011

    Article  CAS  Google Scholar 

  • Tsai WT, Liu SC (2015) Thermochemical characterization of cattle manure relevant to its energy conversion and environmental implications. Biomass Convers Biorefinery 6(1):1–7

    CAS  Google Scholar 

  • Wnetrzak R, Kwapinski W, Peters K, Sommer SG, Jensen LS, Leahy JJ (2013) The influence of the pig manure separation system on the energy production potentials. Bioresour Technol 136(136C):502

    Article  CAS  Google Scholar 

  • Zhongqi HE, Pagliari PH, Waldrip HM (2016) Applied and environmental chemistry of animal manure: a review. Pedosphere 26(6):779–816

    Article  Google Scholar 

Download references

Acknowledgments

The work was supported by a grant from the National Key Technology Research and Development Program of China (No. 2016YFD0501404-6, 2017YFD0800202), the National Natural Science Foundation of China (No. 31401944), the China Agricultural University Education Foundation “Da Bei Nong Group Education Foundation” (No. 1031-2415005), and the Beijing Municipal Natural Science Foundation (No. 6144026).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Tao Zhang .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Li, H., Zhao, X., Zhang, T., Kruse, A. (2019). Hydrothermal Process for Extracting Phosphate from Animal Manure. In: Ohtake, H., Tsuneda, S. (eds) Phosphorus Recovery and Recycling . Springer, Singapore. https://doi.org/10.1007/978-981-10-8031-9_26

Download citation

Publish with us

Policies and ethics