Skip to main content

Effect of Iron on Phosphate Recovery from Sewage Sludge

Abstract

Iron is omnipresent in sewage treatment systems. It can unintentionally be present because of, e.g., groundwater seepage into sewers, or it is intentionally added for odor and corrosion control, phosphate removal, or prevention of hydrogen sulfide emissions. The strong affinity of iron for phosphate has advantages for efficient removal of phosphate from sewage, but it is also often considered a disadvantage for phosphate recovery. For instance, the strong affinity between iron and phosphate may reduce recovery efficiencies via struvite precipitation or for some phosphate recovery methods from ash. On the other hand, iron may also have positive effects on phosphate recovery. Acid consumption was reported to be lower when leaching phosphate from sewage sludge ash with higher iron content. Also, phosphate recovery efficiencies may be higher if a Fe-P compound like vivianite (Fe3(PO4)2 8H2O) could be harvested from sewage sludge. Developers of phosphate recovery technologies should be aware of the potential and obstacles the iron and phosphate chemistry bears.

Keywords

  • Vivianite
  • Iron
  • Chemical phosphate removal
  • Struvite recovery
  • Sewage sludge

This is a preview of subscription content, access via your institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • DOI: 10.1007/978-981-10-8031-9_21
  • Chapter length: 24 pages
  • Instant PDF download
  • Readable on all devices
  • Own it forever
  • Exclusive offer for individuals only
  • Tax calculation will be finalised during checkout
eBook
USD   109.00
Price excludes VAT (USA)
  • ISBN: 978-981-10-8031-9
  • Instant PDF download
  • Readable on all devices
  • Own it forever
  • Exclusive offer for individuals only
  • Tax calculation will be finalised during checkout
Softcover Book
USD   149.99
Price excludes VAT (USA)
Hardcover Book
USD   219.99
Price excludes VAT (USA)
Fig. 21.1
Fig. 21.2

References

  • ACHS (2009) Review of the feasibility of recycling phosphates at sewage treatment plants in The UK – executive summary. Department for Environment, Food and Rural Affairs, 32 pp

    Google Scholar 

  • Adam C, Peplinski B, Michaelis M, Kley G, Simon F-G (2009) Thermochemical treatment of sewage sludge ashes for phosphorus recovery. Waste Manag (New York, NY) 29(3):1122–1128

    CrossRef  CAS  Google Scholar 

  • Antakyali D, Meyer C, Preyl V, Maier W, Steinmetz H (2013) Large-scale application of nutrient recovery from digested sludge as struvite. Water Pract Technol 8(2):256–262

    CrossRef  Google Scholar 

  • Azam HM, Finneran KT (2014) Fe(III) reduction-mediated phosphate removal as vivianite (Fe3(PO4)2·8H2O) in septic system wastewater. Chemosphere 97:1–9

    CrossRef  CAS  Google Scholar 

  • Baker S, Lee Y, Li W (2006) A struvite control and phosphorus removal process for centrate: full-scale testing. Proc Water Environ Fed 2006(7):5197–5208

    CrossRef  Google Scholar 

  • Beecher N, Crawford C, Goldstein N, Kester G, Lono-Batura M, Dziezyk E (2007) A national biosolid regulation, quality, end use & disposal survey: final report. North East Biosolids and Residuals Association, Tamworth

    Google Scholar 

  • Biswas BK, Inoue K, Harada H, Ohto K, Kawakita H (2009) Leaching of phosphorus from incinerated sewage sludge ash by means of acid extraction followed by adsorption on orange waste gel. J Environ Sci 21(12):1753–1760

    CrossRef  CAS  Google Scholar 

  • Bjorn A (2010) Acid phase digestion at Derby STW – Context and preliminary optimisation results

    Google Scholar 

  • Böhnke B (1977) Das Adsorptions-Belebungsverfahren. Korrespondenz Abwasser 24:33

    Google Scholar 

  • Borch T, Fendorf S (2007) Phosphate interactions with iron (Hydr)oxides: mineralization pathways and phosphorus retention upon bioreduction. In: Adsorption of metals by Geomedia II: variables, mechanisms, and model applications, vol. 7. Developments in Earth and Environmental Sciences. Elsevier, p 321–348

    Google Scholar 

  • Boström B, Pettersson K (1982) Different patterns of phosphorus release from lake sediments in laboratory experiments. Hydrobiologia 91–92(1):415–429

    CrossRef  Google Scholar 

  • Brandt RC, Elliott HA, O’Connor GA (2004) Water-extractable phosphorus in biosolids: implications for land-based recycling. Water Environ Res 76(2):121–129

    CrossRef  CAS  Google Scholar 

  • Caraco NF, Cole JJ, Likens GE (1989) Evidence for sulphate-controlled phosphate release from sediments of aquatic systems. Nature 341:316–318

    CrossRef  CAS  Google Scholar 

  • Čermáková Z, Švarcová S, Hradilová J, Bezdička P, Lančok A, Vašutová V, Blažek J, Hradil D (2015) Temperature-related degradation and colour changes of historic paintings containing vivianite. Spectrochim Acta A Mol Biomol Spectrosc 140:101–110

    CrossRef  CAS  Google Scholar 

  • Chen Y, Cheng JJ, Creamer KS (2008) Inhibition of anaerobic digestion process: a review. Bioresour Technol 99(10):4044–4064

    CrossRef  CAS  Google Scholar 

  • Chen J, Bai J, Chen H, Graetz J (2011) In situ hydrothermal synthesis of LiFePO 4 studied by synchrotron X-ray diffraction. J Phys Chem Lett 2(15):1874–1878

    CrossRef  CAS  Google Scholar 

  • Cheng X, Chen B, Cui Y, Sun D, Wang X (2015) Iron(III) reduction-induced phosphate precipitation during anaerobic digestion of waste activated sludge. Sep Purif Technol 143:6–11

    CrossRef  CAS  Google Scholar 

  • Coats ER, Watkins DL, Kranenburg D (2011) A comparative environmental life-cycle analysis for removing phosphorus from wastewater: biological versus physical/chemical processes. Water Environ Res 83(8):750

    CrossRef  CAS  Google Scholar 

  • Cooper J (2014) Managing phosphorus in the UK water industry to increase national resource security. PhD, Birmingham

    Google Scholar 

  • Cornel P, Schaum C (2009) Phosphorus recovery from wastewater: needs, technologies and costs. Water Sci Technol 59(6):1069–1076

    CrossRef  CAS  Google Scholar 

  • Cornel P, Jardin N, Schaum C (2004) Möglichkeiten einer Rückgewinnung von Phosphor aus Klärschlammasche: Teil 1: Ergebnisse von Laborversuchen zur Extraktion von Phosphor. GWF Wasser 145(9):627–632

    CAS  Google Scholar 

  • Cullen N, Baur R, Schauer P (2013) Three years of operation of North America’s first nutrient recovery facility. Water Sci Technol 68(4):763–768

    CrossRef  CAS  Google Scholar 

  • Cyr M, Coutand M, Clastres P (2007) Technological and environmental behavior of sewage sludge ash (SSA) in cement-based materials. Cem Concr Res 37(8):1278–1289

    CrossRef  CAS  Google Scholar 

  • Da Silva S, Basséguy R, Bergel A (2004) Hydrogenase-catalysed deposition of vivianite on mild steel. Electrochim Acta 49(13):2097–2103

    CrossRef  CAS  Google Scholar 

  • Delahaye M (2017) Phosphorus recovery from wastewater: SUEZ’s Phosphogreen technology successfully running in Denmark. IWA specialist conference on Sludge Management SludgeTech 2017

    Google Scholar 

  • Der Schweizerische Bundesrat (2015) Verordnung über die Vermeidung und die Entsorgung von Abfällen

    Google Scholar 

  • Desmidt E, Ghyselbrecht K, Zhang Y, Pinoy L, Van der Bruggen B, Verstraete W, Rabaey K, Meesschaert B (2015) Global phosphorus scarcity and full-scale P-recovery techniques: a review. Crit Rev Environ Sci Technol 45(4):336–384

    CrossRef  CAS  Google Scholar 

  • Deutscher Bundestag (2017) Verordnung zur Neuordnung der Klärschlammverwertung

    Google Scholar 

  • Donatello S, Cheeseman CR (2013) Recycling and recovery routes for incinerated sewage sludge ash (ISSA): a review. Waste Manag (New York, N.Y.) 33(11):2328–2340

    CrossRef  CAS  Google Scholar 

  • Doyle JD, Parsons SA (2002) Struvite formation, control and recovery. Water Res 36(16):3925–3940

    CrossRef  CAS  Google Scholar 

  • DWA (2005) Stand der Klarschlammbehandlung und Entsorgung in Deutschland. ISBN 3-937758-29-1, 66 p

    Google Scholar 

  • Egle L, Rechberger H, Zessner M (2014) Endbericht Phosphorrückgewinnung aus dem Abwasser, Wien, 323 pp

    Google Scholar 

  • Egle L, Rechberger H, Zessner M (2015) Overview and description of technologies for recovering phosphorus from municipal wastewater. Resour Conserv Recycl 105:325–346

    CrossRef  Google Scholar 

  • Elliott H, O’Connor G (2007) Phosphorus management for sustainable biosolids recycling in the United States. Soil Biol Biochem 39(6):1318–1327

    CrossRef  CAS  Google Scholar 

  • Emerson D, Roden E, Twining BS (2012) The microbial ferrous wheel: iron cycling in terrestrial, freshwater, and marine environments. Front Microbiol 3:383

    CrossRef  Google Scholar 

  • Eriksson J (2001) Concentrations of 61 trace elements in sewage sludge, farmyard manure, mineral fertiliser, precipitation and in oil and crops. Swedish Environmental Protection Agency Stockholm, Sweden

    Google Scholar 

  • European Commission (2016) Eighth Report on the Implementation Status and the Programmes for Implementation (as required by Article 17) of Council Directive 91/271/EEC concerning urban waste water treatment

    Google Scholar 

  • Ewert W, Hermanussen O, Kabbe C, Mele C, Niewersch H, Paillard H, Stössel E, Wagenbach A, Steman J (2014) Sustainable sewage sludge management fostering phosphorus recovery and energy efficiency

    Google Scholar 

  • Faivre D (2016) Iron oxides: from nature to applications. Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim

    CrossRef  Google Scholar 

  • Fischer F, Zufferey G, Sugnaux M, Happe M (2015) Microbial electrolysis cell accelerates phosphate remobilisation from iron phosphate contained in sewage sludge. Environ Sci: Processes Impacts 17(1):90–97

    CAS  Google Scholar 

  • Flores-Alsina X, Solon K, Kazadi Mbamba C, Tait S, Gernaey KV, Jeppsson U, Batstone DJ (2016) Modelling phosphorus (P), sulfur (S) and iron (Fe) interactions for dynamic simulations of anaerobic digestion processes. Water Res 95:370–382

    CrossRef  CAS  Google Scholar 

  • Franz T (2006) Spatial classification methods for efficient infiltration measurements and transfer of measuring results. PhD, Dresden

    Google Scholar 

  • Frossard E, Bauer JP, Lothe F (1997) Evidence of vivianite in FeSO4-flocculated sludges. Water Res 31(10):2449–2454

    CrossRef  CAS  Google Scholar 

  • Fulazzaky MA, Salim N, Abdullah NH, Yusoff A, Paul E (2014) Precipitation of iron-hydroxy-phosphate of added ferric iron from domestic wastewater by an alternating aerobic–anoxic process. Chem Eng J 253:291–297

    CrossRef  CAS  Google Scholar 

  • Fytianos K, Voudrias E, Raikos N (1998) Modelling of phosphorus removal from aqueous and wastewater samples using ferric iron. Environ Pollut 101(1):123–130

    CrossRef  CAS  Google Scholar 

  • Geraarts B, Koetse E, Loeffen P, Reitsma B, Gaillard A (2007) Fosfaatterugwinning uit ijzerarm slib van rioolwaterzuiveringsinrichtingen. STOWA, report 2007–31. ISBN 78.90.5773.380.2, 83 p

    Google Scholar 

  • Ghassemi M, Recht HL (1971) Phosphate precipitation with ferrous iron. Water pollution control research series, 64 pp

    Google Scholar 

  • Golterman HL (1995) The role of the ironhydroxide-phosphate-sulphide system in the phosphate exchange between sediments and overlying water. Hydrobiologia 297(1):43–54

    CrossRef  CAS  Google Scholar 

  • Guedes P, Couto N, Ottosen LM, Kirkelund GM, Mateus E, Ribeiro AB (2016) Valorisation of ferric sewage sludge ashes: potential as a phosphorus source. Waste Manag (New York, NY) 52:193–201

    CrossRef  CAS  Google Scholar 

  • Gutierrez O, Park D, Sharma KR, Yuan Z (2010) Iron salts dosage for sulfide control in sewers induces chemical phosphorus removal during wastewater treatment. Water Res 44(11):3467–3475

    CrossRef  CAS  Google Scholar 

  • Hansen B. (2017) Kemira, personal communication, explanation and translation of data Statistics Sweden (SCB)

    Google Scholar 

  • Heiberg L, Koch CBK, Charlotte J, Henning S, Hansen HBC (2012) Vivianite precipitation and phosphate sorption following iron reduction in anoxic soils. J Environ Qual 41(3):938–949

    CrossRef  CAS  Google Scholar 

  • Hermann L (2011) Phosphate fertilizers from sewage sludge ash-design of an industrial manufacturing plant. Proc Water Environ Fed Nutr Recover Manag 2011(1):317–332

    CrossRef  Google Scholar 

  • Hermanussen O, Müller-Schapper J, Haun E, Weichgrebe D, Rosenwinkel KH, Esemen T, Dockhorn T, Dichtl N (2012) Wissenschaftliche Begleitung der großtechnischen Anwendung Wissenschaftliche Begleitung der großtechnischen Anwendungder Seaborne-Technologie auf der Kläranlage Gifhorn: – Zusammenfassung der durchgeführten Untersuchungen und technisch-wirtschaftliche Bewertung der Verfahrenstechnik-

    Google Scholar 

  • Hvitved-Jacobsen T, Vollertsen J, Nielsen AH (2013) Sewer processes: microbial and chemical process engineering of sewer networks, 2nd edn. CRC Press, Boca Raton

    CrossRef  Google Scholar 

  • Jetten M, Horn S, van Loosdrecht MCM (1997) Towards a more sustainable municipal wastewater treatment system. Water Sci Technol 35(9):171–180

    CrossRef  CAS  Google Scholar 

  • Kahiluoto H, Kuisma M, Ketoja E, Salo T, Heikkinen J (2015) Phosphorus in manure and sewage sludge more recyclable than in soluble inorganic fertiliser. In revision. Environ Sci Technol 49(4):2115–2122

    CrossRef  CAS  Google Scholar 

  • Kang SJ, Olmstead K, Takacs K, Collins J (2008) Municipal nutrient removal technologies reference document, volume 1 – technical report. US Environmental Protection Agency (EPA), 268 pp. http://water.epa.gov/scitech/wastetech/upload/mnrt-volume1.pdf

  • Karlsson I (2001) Full scale plant recovering iron phosphate from sewage at Helsingborg, Sweden. Proc. 2nd Int.Conf. on Recovery of Phosphates from Sewage and Animal Wastes, CEEP, Holland, 12–14 March 2001

    Google Scholar 

  • Kato F, Kitakoji H, Oshita K, Takaoka M, Takeda N, Matsumoto T (2006) Extraction efficiency of phosphate from pre-coagulated sludge with NaHS. Water Sci Technol 54(5):119

    CrossRef  CAS  Google Scholar 

  • Kelessidis A, Stasinakis AS (2012) Comparative study of the methods used for treatment and final disposal of sewage sludge in European countries. Waste Manag (New York, N.Y.) 32(6):1186–1195

    CrossRef  CAS  Google Scholar 

  • Kidd PS, Dominguez-Rodriguez MJ, Diaz J, Monterroso C (2007) Bioavailability and plant accumulation of heavy metals and phosphorus in agricultural soils amended by long-term application of sewage sludge. Chemosphere 66(8):1458–1467

    CrossRef  CAS  Google Scholar 

  • Korving L (2012) Trends in slibontwatering. STOWA, report 2011–46. ISBN 978.90.5773.577.6, 108 p

    Google Scholar 

  • Krogstad T, Sogn TA, Asdal Å, Sæbø A (2005) Influence of chemically and biologically stabilized sewage sludge on plant-available phosphorous in soil. Ecol Eng 25(1):51–60

    CrossRef  Google Scholar 

  • Langeveld CP, Wolde KWT (2013) Phosphate recycling in mineral fertiliser production. Proceedings, 1466–1314 727. International Fertiliser Society, Leek

    Google Scholar 

  • Lasheen MR, Ammar NS (2009) Assessment of metals speciation in sewage sludge and stabilized sludge from different wastewater treatment plants, Greater Cairo, Egypt. J Hazard Mater 164(2–3):740–749

    CrossRef  CAS  Google Scholar 

  • Li J (2005) Effects of Fe(III) on floc characteristics of activated sludge. J Chem Technol Biotechnol 80(3):313–319

    CrossRef  CAS  Google Scholar 

  • Likosova EM, Keller J, Rozendal RA, Poussade Y, Freguia S (2013) Understanding colloidal FeSx formation from iron phosphate precipitation sludge for optimal phosphorus recovery. J Colloid Interface Sci 403:16–21

    CrossRef  CAS  Google Scholar 

  • Lu Q, He ZL, Stoffella PJ (2012) Land application of biosolids in the USA: a review. Appl Environ Soil Sci 2012:1–11

    CrossRef  Google Scholar 

  • Lu J, Yang J, Xu K, Hao J, Li YY (2016) Phosphorus release from coprecipitants formed during orthophosphate removal with Fe(III) salt coagulation: effects of pH, Eh, temperature and aging time. J Environ Chem Eng 4(3):3322–3329

    CrossRef  CAS  Google Scholar 

  • Luedecke C, Hermanowicz SW, Jenkins D (1989) Precipitation of ferric phosphate in activated-sludge – a chemical model and its verification. Water Sci Technol 21(4–5):325–337

    CrossRef  CAS  Google Scholar 

  • Lycke D, Prasad R, Meulenkamp R, Morgenschweis CM, Steensma W (2017) Combining phosphorus recovery and ammonia removal in the Omzet.Amersfoort project. IWA specialist conference on Sludge Management SludgeTech 2017

    Google Scholar 

  • Macdonald GK, Bennett EM, Potter PA, Ramankutty N (2011) Agronomic phosphorus imbalances across the world’s croplands. Proc Natl Acad Sci U S A 108(7):3086–3091

    CrossRef  Google Scholar 

  • Magdziarz A, Kosowska-Golachowska M, Kijo-Kleczkowska A, Środa K, Wolski K, Richter D, Musiał T, Filipowicz M, Dudek M, Olkuski T, Styszko K (2016) Analysis of sewage sludge ashes from air and oxy-fuel combustion in a circulating fluidized-bed. E3S Web Conf. 10, 54

    Google Scholar 

  • Maier W, Weidelener A, Krampe J, Rott I (2005) Entwicklung eines Verfahrens zur Phosphat-Rückgewinnung aus ausgefaultem Nassschlam oder entwässertem Faulschlamm als gut pflanzenverfügbares Magnesium-Ammonium-Phosphat (MAP): Schlussbericht: Teil 1: Zusammenfassung und Wertung der Ergebnisse, 160 pp

    Google Scholar 

  • Mamais D, Pitt PA, Cheng YW, Loiacono J, Jenkins D (1994) Determination of ferric chloride dose to control struvite precipitation in anaerobic sludge digesters. Water Environ Res 66(7):912–918

    CrossRef  CAS  Google Scholar 

  • Mao Y, Yang S, Yue Q, Wang W (2016) Theoretical and experimental study of the mechanisms of phosphate removal in the system containing Fe(III)-ions. Environ Sci Pollut Res Int 23(23):24265–24276

    CrossRef  CAS  Google Scholar 

  • Marchi A, Geerts S, Weemaes M, Schiettecatte W, Wim S, Vanhoof C, Christine V (2015) Full-scale phosphorus recovery from digested waste water sludge in Belgium – part I: technical achievements and challenges. Water Sci Technol 71(4):487–494

    CrossRef  CAS  Google Scholar 

  • Marx JJ, Wilson TE, Schroedel RB, Winfield G, Sokhey A (2001) Vivianite nutrient removal’s hidden problem? Proc Water Environ Fed 2001(8):378–388

    CrossRef  Google Scholar 

  • Miller M, O’Connor GA (2009) The longer-term phytoavailability of biosolids-phosphorus. Agron J 101(4):889

    CrossRef  CAS  Google Scholar 

  • Miot J, Benzerara K, Morin G, Bernard S, Beyssac O, Larquet E, Kappler A, Guyot F (2009) Transformation of vivianite by anaerobic nitrate-reducing iron-oxidizing bacteria. Geobiology 7(3):373–384

    CrossRef  CAS  Google Scholar 

  • Mishima I, Nakajima J (2011) Application of iron electrolysis to full-scale activated sludge process for phosphorus removal. J Wat Environ Tech 9(4):359–369

    CrossRef  Google Scholar 

  • Morse G, Brett S, Guy J, Lester J (1998) Review: phosphorus removal and recovery technologies. Sci Total Environ 212(1):69–81

    CrossRef  CAS  Google Scholar 

  • Nanzer S, Oberson A, Berger L, Berset E, Hermann L, Frossard E (2014) The plant availability of phosphorus from thermo-chemically treated sewage sludge ashes as studied by 33P labeling techniques. Plant Soil 377(1–2):439–456

    CrossRef  CAS  Google Scholar 

  • Neethling JB, Benisch M (2004) Struvite control through process and facility design as well as operation strategy. Water Sci Technol 49(2):191–199

    CrossRef  CAS  Google Scholar 

  • Nielsen P (1996) The significance of microbial Fe(III) reduction in the activated sludge process. Water Sci Technol 34(5–6):129–136

    CrossRef  CAS  Google Scholar 

  • Nielsen AH, Lens P, Vollertsen J, Hvitved-Jacobsen T (2005) Sulfide–iron interactions in domestic wastewater from a gravity sewer. Water Res 39(12):2747–2755

    CrossRef  CAS  Google Scholar 

  • Nowak O, Keil S, Fimml C (2011) Examples of energy self-sufficient municipal nutrient removal plants. Water Sci Technol 64(1):1

    CrossRef  CAS  Google Scholar 

  • Nriagu JO (1972) Stability of vivianite and ion-pair formation in the system fe3(PO4)2-H3PO4H3PO4-H2o. Geochim Cosmochim Acta 36(4):459–470

    CrossRef  CAS  Google Scholar 

  • Nriagu JO, Dell CI (1974) Diagenetic formation of iron phosphates in recent lake sediments. Am Mineral 59:934–946

    CAS  Google Scholar 

  • Nriagu JO, Moore PB (1984) Phosphate minerals. Springer Berlin Heidelberg, Berlin

    CrossRef  Google Scholar 

  • O’Connor GA, Sarkar D, Brinton SR, Elliott HA, Martin FG (2004) Phytoavailability of biosolids phosphorus. J Environ Qual 33(2):703

    CrossRef  Google Scholar 

  • Odegaard H, Paulsrud B, Karlsson I (2002) Wastewater sludge as a resource: sludge disposal strategies and corresponding treatment technologies aimed at sustainable handling of wastewater sludge. Water Sci Technol 46(10):295–303

    CrossRef  CAS  Google Scholar 

  • Ofwat (2005) Water framework directive economic analysis of water industry costs

    Google Scholar 

  • Ogilvie D (1998) National study of the composition of sewage sludge. Drainage Managers Group, a subgroup of the New Zealand Water and Wastes Association, Auckland [N.Z.]

    Google Scholar 

  • Ohtake H (2017) CPR share in Japan

    Google Scholar 

  • Ohtake H, Okano K (2015) Development and implementation of technologies for recycling phosphorus in secondary resources in Japan. Glob Environ Res 19:49–65

    Google Scholar 

  • Oleszkiewicz J (2014) Options for improved nutrient removal and recovery from municipal wastewater in the Canadian context

    Google Scholar 

  • Oleszkiewicz J, Kruk D, Devlin T, Lashkarizadeh M, Qiuyan Y (2015) Options for improved nutrient removal and recovery from municipal wastewater in the Canadian context. Canadian Water Network

    Google Scholar 

  • Ottosen LM, Kirkelund GM, Jensen PE (2013) Extracting phosphorous from incinerated sewage sludge ash rich in iron or aluminum. Chemosphere 91(7):963–969

    CrossRef  CAS  Google Scholar 

  • Patrick WH, Gotoh S, Williams BG (1973) Strengite dissolution in flooded soils and sediments. Science 179(4073):564–565

    CrossRef  CAS  Google Scholar 

  • Paul E, Laval ML, Sperandio M (2001) Excess sludge production and costs due to phosphorus removal. Environ Technol 22:1363–1371

    CrossRef  CAS  Google Scholar 

  • Peretyazhko T, Sposito G (2005) Iron(III) reduction and phosphorous solubilization in humid tropical forest soils. Geochim Cosmochim Acta 69(14):3643–3652

    CrossRef  CAS  Google Scholar 

  • Petzet S, Peplinski B, Cornel P (2012) On wet chemical phosphorus recovery from sewage sludge ash by acidic or alkaline leaching and an optimized combination of both. Water Res 46(12):3769–3780

    CrossRef  CAS  Google Scholar 

  • Pham AN, Rose AL, Feltz AJ, Waite TD (2004) The effect of dissolved natural organic matter on the rate of removal of ferrous iron in fresh waters. In: Natural organic material research: innovations and applications for drinking water. IWA Publishing, pp 213–219

    Google Scholar 

  • Poffet MS (2007) Thermal runaway of the dried sewage sludge in the storage tanks: from molecular origins to technical measures of smouldering fire prevention. Dissertation thesis

    Google Scholar 

  • Prochnow LI, Chien SH, Carmona G, Dillard EF, Henao J, Austin ER (2008) Plant availability of phosphorus in four superphosphate fertilizers varying in water-insoluble phosphate compounds. Soil Sci Soc Am J 72(2):462

    CrossRef  CAS  Google Scholar 

  • Rapf M, Raupenstrauch H, Cimatoribus C, Kranert M (2012) A new thermo-chemical approach for the recovery of phosphorus from sewage sludge

    Google Scholar 

  • Rasmussen H, Nielsen P (1996) Iron reduction in activated sludge measured with different extraction techniques. Water Res 30(3):551–558

    CrossRef  CAS  Google Scholar 

  • Reusser SR (2009) Proceed with caution in advanced anaerobic digestion system design. Proceedings of the Water Environment Federation Session 41 through Session 50 (3065–3084)

    CrossRef  Google Scholar 

  • Richardson CJ (1985) Mechanisms controlling phosphorus retention capacity in freshwater wetlands. Science 228(4706):1424–1427

    CrossRef  CAS  Google Scholar 

  • Roden EE, Edmonds JW (1997) Phosphate mobilization in iron-rich anaerobic sediments: microbial Fe(III) oxide reduction versus iron-sulfide formation. Arch Hydrobiol 139(3):347–378

    CAS  Google Scholar 

  • Rodgers KA, Henderson GS (1986) The thermochemistry of some iron phosphate minerals: vivianite, metavivianite, baraćite, ludlamite and vivianite/metavivianite admixtures. Thermochim Acta 104:1–12

    CrossRef  CAS  Google Scholar 

  • Roldan R, Barron V, Torrent J (2002) Experimental alteration of vivianite to lepidocrocite in a calcareous medium. Clay Miner 37(4):709–718

    CrossRef  CAS  Google Scholar 

  • Römer W (2006) Vergleichende Untersuchungen zur Pflanzenverfügbarkeit von Phosphat aus verschiedenen P-Recycling-Produkten im Keimpflanzenversuch. J Plant Nutr Soil Sci 169(6):826–832

    CrossRef  CAS  Google Scholar 

  • Rothe M, Kleeberg A, Hupfer M (2016) The occurrence, identification and environmental relevance of vivianite in waterlogged soils and aquatic sediments. Earth Sci Rev 158:51–64

    CrossRef  CAS  Google Scholar 

  • Samie IF, Römer W (2001) Phosphorus availability to maize plants from sewage sludge treated with Fe compounds. In: Horst WJ, Schenk MK, Bürkert A, Claassen N, Flessa H, Frommer WB, Goldbach H, Olfs H-W, Römheld V, Sattelmacher B, Schmidhalter U, Schubert S, Wirén N v, Wittenmayer L (eds) Plant nutrition. Springer Netherlands, Dordrecht, pp 846–847

    CrossRef  Google Scholar 

  • Sano A, Kanomata M, Inoue H, Sugiura N, Xu K-Q, Inamori Y (2012) Extraction of raw sewage sludge containing iron phosphate for phosphorus recovery. Chemosphere 89(10):1243–1247

    CrossRef  CAS  Google Scholar 

  • SCB (2016) Utsläpp till vatten och slamproduktion 2014 Kommunala reningsverk, massa- och pappersindustri samt viss övrig industri. Statistiska centralbyran

    Google Scholar 

  • Schipper WJ, Korving L (2009) Full-scale plant test using sewage sludge ash as raw material for phosphorus production. In: Proceedings of International Conference on Nutrient Recovery, May 2009

    Google Scholar 

  • Schröder JJ, Cordell D, Smit AL, Rosemarin A (2010) Sustainable use of phosphorus. Wageningen University and Research Centre, 140 pp

    Google Scholar 

  • Schröder JJ, Smit AL, Cordell D, Rosemarin A (2011) Improved phosphorus use efficiency in agriculture: a key requirement for its sustainable use. Chemosphere 84(6):822–831

    CrossRef  CAS  Google Scholar 

  • Schwertmann U, Cornell RM (2000) Iron oxides in the laboratory: preparation and characterization, 2nd completely rev. and extended edn. Wiley-VCH, Weinheim

    CrossRef  Google Scholar 

  • Shimp GF, Barnard JL, Bott CB (2013) Seeking to understand and address the impacts of biological phosphorus removal on biosolids dewatering. Proc Water Environ Fed 2013(9):5668–5685

    CrossRef  Google Scholar 

  • Singer PC (1972) Anaerobic control of phosphate by ferrous iron: anaerobic control of phosphate by ferrous iron. J Water Pollut Control Fed 44(4):663

    CAS  Google Scholar 

  • Smith S, Takacs I, Murthy S, Daigger GT, Szabo A (2008) Phosphate complexation model and its implications for chemical phosphorus removal. Water Environ Res 80(5):428–438

    CAS  Google Scholar 

  • Smolders AJP, Lamers LPM, Lucassen ECHET, Van Der Velde G, Roelofs JGM (2006) Internal eutrophication: how it works and what to do about it – a review. Chem Ecol 22(2):93–111

    CrossRef  CAS  Google Scholar 

  • Stumm W, Morgan JJ (1996) Aquatic chemistry: chemical equilibria and rates in natural waters, Environmental science and technology, 3rd edn. Wiley, New York

    Google Scholar 

  • Stumm W, Sigg L, Sulzberger B (1992) Chemistry of the solid-water interface: processes at the mineral-water and particle-water in natural systems, A Wiley-Interscience publication. Wiley, New York

    Google Scholar 

  • Suschka J, Machnicka A, Poplawski S (2001) Phosphate recovery from iron phosphate sludge. Environ Technol 22:1295–1301

    CrossRef  CAS  Google Scholar 

  • Takács I, Murthy S, Smith S, McGrath M (2006) Chemical phosphorus removal to extremely low levels: experience of two plants in the Washington, DC area. Water Sci Technol 53(12):21

    CrossRef  CAS  Google Scholar 

  • Taylor KG, Hudson-Edwards KA, Bennett AJ, Vishnyakov V (2008) Early diagenetic vivianite [Fe3(PO4)2·8H2O] in a contaminated freshwater sediment and insights into zinc uptake: a μ-EXAFS, μ-XANES and Raman study. Appl Geochem 23(6):1623–1633

    CrossRef  CAS  Google Scholar 

  • Tchobanoglous G, Burton FL, Stensel HD (2013) Wastewater engineering: treatment and reuse, 5th edn. McGraw-Hill Higher Education; McGraw-Hill [distributor], New York

    Google Scholar 

  • Theis TL, Singer PC (1974) Complexation of iron(II) by organic matter and its effect on iron(II) oxygenation. Environ Sci Technol 8(6):569–573

    CrossRef  CAS  Google Scholar 

  • Thistleton J, Clark T, Pearce P, Parsons SA (2001) Mechanisms of chemical phosphorus removal. Process Saf Environ Prot 79(6):339–344

    CrossRef  CAS  Google Scholar 

  • Tilley (2005) Supplementary material to part 3: reactions and transformations. In: Understanding solids. Wiley, pp 531–542

    Google Scholar 

  • USEPA (2009) Targeted national sewage sludge survey sampling and analysis technical report (January)

    Google Scholar 

  • van den Brand TPH, Roest K, Chen GH, Brdjanovic D, van Loosdrecht MCM (2015) Occurrence and activity of sulphate reducing bacteria in aerobic activated sludge systems. World J Microbiol Biotechnol 31(3):507–516

    CrossRef  CAS  Google Scholar 

  • van der Grift B, Behrends T, Osté LA, Schot PP, Wassen MJ, Griffioen J (2016) Fe hydroxyphosphate precipitation and Fe(II) oxidation kinetics upon aeration of Fe(II) and phosphate-containing synthetic and natural solutions. Geochim Cosmochim Acta 186:71–90

    CrossRef  CAS  Google Scholar 

  • Waerenborgh JC, Figueiredo MO (1986) X-ray powder diffraction and 57 Fe Mössbauer spectroscopy study of the thermal breakdown of vivianite, Fe3(PO4)2x8H2O. Hyperfine Interact 29(1):1101–1104

    CrossRef  CAS  Google Scholar 

  • WEF (2011) Nutrient removal, WEF manual of practice no. 34. McGraw-Hill; WEF Press, New York

    Google Scholar 

  • Weigand H, Bertau M, Bohndick F, Bruckert A (2011) RECOPHOS: recophos: full scale recovery of phosphate from sewage sludge ash. Sardinia 2011, Thirteenth International Waste Management and Landfill Symposium

    Google Scholar 

  • Wendt Von H (1973) Die Kinetik typischer Hydrolysereaktionen von mehrwertigen Kationen. Chimia 27:575–588

    Google Scholar 

  • Wilfert P, Suresh Kumar P, Korving L, Witkamp GJ, van Loosdrecht MCM (2015) The relevance of phosphorus and iron chemistry to the recovery of phosphorus from wastewater: a review. Environ Sci Technol 104:449

    Google Scholar 

  • Wilfert P, Mandalidis A, Dugulan I, Goubitz K, Korving L, Temmink H, Witkamp GJ, van Loosdrecht M (2016) Vivianite as an important iron phosphate precipitate in sewage treatment plants. Water Res 104:449

    CrossRef  CAS  Google Scholar 

  • Xu Y, Hu H, Liu J, Luo J, Qian G, Wang A (2015) pH dependent phosphorus release from waste activated sludge: contributions of phosphorus speciation. Chem Eng J 267:260–265

    CrossRef  CAS  Google Scholar 

  • Yoon SY, Lee CG, Park JA, Kim JH, Kim SB, Lee SH, Choi JW (2014) Kinetic, equilibrium and thermodynamic studies for phosphate adsorption to magnetic iron oxide nanoparticles. Chem Eng J 236:341–347

    CrossRef  CAS  Google Scholar 

  • Zhang X (2012) Factors influencing iron reduction–induced phosphorus precipitation. Environ Eng Sci 29(6):511–519

    CrossRef  CAS  Google Scholar 

Download references

Acknowledgments

This work was performed in the TTIW-cooperation framework of Wetsus, European Centre of Excellence for Sustainable Water Technology (www.wetsus.nl). Wetsus is funded by the Dutch Ministry of Economic Affairs, the European Union Regional Development Fund, the Province of Fryslân, the City of Leeuwarden, and the EZ/Kompas program of the “Samenwerkingsverband Noord-Nederland.” We thank the participants of the research theme “Phosphate Recovery” for their financial support and helpful discussions. Furthermore, we acknowledge the valuable support from Anna Jeworrek for her contribution to the section on the alkaline treatment of sewage sludge.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Leon Korving .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and Permissions

Copyright information

© 2019 Springer Nature Singapore Pte Ltd.

About this chapter

Verify currency and authenticity via CrossMark

Cite this chapter

Korving, L., Van Loosdrecht, M., Wilfert, P. (2019). Effect of Iron on Phosphate Recovery from Sewage Sludge. In: Ohtake, H., Tsuneda, S. (eds) Phosphorus Recovery and Recycling . Springer, Singapore. https://doi.org/10.1007/978-981-10-8031-9_21

Download citation