ACHS (2009) Review of the feasibility of recycling phosphates at sewage treatment plants in The UK – executive summary. Department for Environment, Food and Rural Affairs, 32 pp
Google Scholar
Adam C, Peplinski B, Michaelis M, Kley G, Simon F-G (2009) Thermochemical treatment of sewage sludge ashes for phosphorus recovery. Waste Manag (New York, NY) 29(3):1122–1128
CrossRef
CAS
Google Scholar
Antakyali D, Meyer C, Preyl V, Maier W, Steinmetz H (2013) Large-scale application of nutrient recovery from digested sludge as struvite. Water Pract Technol 8(2):256–262
CrossRef
Google Scholar
Azam HM, Finneran KT (2014) Fe(III) reduction-mediated phosphate removal as vivianite (Fe3(PO4)2·8H2O) in septic system wastewater. Chemosphere 97:1–9
CrossRef
CAS
Google Scholar
Baker S, Lee Y, Li W (2006) A struvite control and phosphorus removal process for centrate: full-scale testing. Proc Water Environ Fed 2006(7):5197–5208
CrossRef
Google Scholar
Beecher N, Crawford C, Goldstein N, Kester G, Lono-Batura M, Dziezyk E (2007) A national biosolid regulation, quality, end use & disposal survey: final report. North East Biosolids and Residuals Association, Tamworth
Google Scholar
Biswas BK, Inoue K, Harada H, Ohto K, Kawakita H (2009) Leaching of phosphorus from incinerated sewage sludge ash by means of acid extraction followed by adsorption on orange waste gel. J Environ Sci 21(12):1753–1760
CrossRef
CAS
Google Scholar
Bjorn A (2010) Acid phase digestion at Derby STW – Context and preliminary optimisation results
Google Scholar
Böhnke B (1977) Das Adsorptions-Belebungsverfahren. Korrespondenz Abwasser 24:33
Google Scholar
Borch T, Fendorf S (2007) Phosphate interactions with iron (Hydr)oxides: mineralization pathways and phosphorus retention upon bioreduction. In: Adsorption of metals by Geomedia II: variables, mechanisms, and model applications, vol. 7. Developments in Earth and Environmental Sciences. Elsevier, p 321–348
Google Scholar
Boström B, Pettersson K (1982) Different patterns of phosphorus release from lake sediments in laboratory experiments. Hydrobiologia 91–92(1):415–429
CrossRef
Google Scholar
Brandt RC, Elliott HA, O’Connor GA (2004) Water-extractable phosphorus in biosolids: implications for land-based recycling. Water Environ Res 76(2):121–129
CrossRef
CAS
Google Scholar
Caraco NF, Cole JJ, Likens GE (1989) Evidence for sulphate-controlled phosphate release from sediments of aquatic systems. Nature 341:316–318
CrossRef
CAS
Google Scholar
Čermáková Z, Švarcová S, Hradilová J, Bezdička P, Lančok A, Vašutová V, Blažek J, Hradil D (2015) Temperature-related degradation and colour changes of historic paintings containing vivianite. Spectrochim Acta A Mol Biomol Spectrosc 140:101–110
CrossRef
CAS
Google Scholar
Chen Y, Cheng JJ, Creamer KS (2008) Inhibition of anaerobic digestion process: a review. Bioresour Technol 99(10):4044–4064
CrossRef
CAS
Google Scholar
Chen J, Bai J, Chen H, Graetz J (2011) In situ hydrothermal synthesis of LiFePO 4 studied by synchrotron X-ray diffraction. J Phys Chem Lett 2(15):1874–1878
CrossRef
CAS
Google Scholar
Cheng X, Chen B, Cui Y, Sun D, Wang X (2015) Iron(III) reduction-induced phosphate precipitation during anaerobic digestion of waste activated sludge. Sep Purif Technol 143:6–11
CrossRef
CAS
Google Scholar
Coats ER, Watkins DL, Kranenburg D (2011) A comparative environmental life-cycle analysis for removing phosphorus from wastewater: biological versus physical/chemical processes. Water Environ Res 83(8):750
CrossRef
CAS
Google Scholar
Cooper J (2014) Managing phosphorus in the UK water industry to increase national resource security. PhD, Birmingham
Google Scholar
Cornel P, Schaum C (2009) Phosphorus recovery from wastewater: needs, technologies and costs. Water Sci Technol 59(6):1069–1076
CrossRef
CAS
Google Scholar
Cornel P, Jardin N, Schaum C (2004) Möglichkeiten einer Rückgewinnung von Phosphor aus Klärschlammasche: Teil 1: Ergebnisse von Laborversuchen zur Extraktion von Phosphor. GWF Wasser 145(9):627–632
CAS
Google Scholar
Cullen N, Baur R, Schauer P (2013) Three years of operation of North America’s first nutrient recovery facility. Water Sci Technol 68(4):763–768
CrossRef
CAS
Google Scholar
Cyr M, Coutand M, Clastres P (2007) Technological and environmental behavior of sewage sludge ash (SSA) in cement-based materials. Cem Concr Res 37(8):1278–1289
CrossRef
CAS
Google Scholar
Da Silva S, Basséguy R, Bergel A (2004) Hydrogenase-catalysed deposition of vivianite on mild steel. Electrochim Acta 49(13):2097–2103
CrossRef
CAS
Google Scholar
Delahaye M (2017) Phosphorus recovery from wastewater: SUEZ’s Phosphogreen technology successfully running in Denmark. IWA specialist conference on Sludge Management SludgeTech 2017
Google Scholar
Der Schweizerische Bundesrat (2015) Verordnung über die Vermeidung und die Entsorgung von Abfällen
Google Scholar
Desmidt E, Ghyselbrecht K, Zhang Y, Pinoy L, Van der Bruggen B, Verstraete W, Rabaey K, Meesschaert B (2015) Global phosphorus scarcity and full-scale P-recovery techniques: a review. Crit Rev Environ Sci Technol 45(4):336–384
CrossRef
CAS
Google Scholar
Deutscher Bundestag (2017) Verordnung zur Neuordnung der Klärschlammverwertung
Google Scholar
Donatello S, Cheeseman CR (2013) Recycling and recovery routes for incinerated sewage sludge ash (ISSA): a review. Waste Manag (New York, N.Y.) 33(11):2328–2340
CrossRef
CAS
Google Scholar
Doyle JD, Parsons SA (2002) Struvite formation, control and recovery. Water Res 36(16):3925–3940
CrossRef
CAS
Google Scholar
DWA (2005) Stand der Klarschlammbehandlung und Entsorgung in Deutschland. ISBN 3-937758-29-1, 66 p
Google Scholar
Egle L, Rechberger H, Zessner M (2014) Endbericht Phosphorrückgewinnung aus dem Abwasser, Wien, 323 pp
Google Scholar
Egle L, Rechberger H, Zessner M (2015) Overview and description of technologies for recovering phosphorus from municipal wastewater. Resour Conserv Recycl 105:325–346
CrossRef
Google Scholar
Elliott H, O’Connor G (2007) Phosphorus management for sustainable biosolids recycling in the United States. Soil Biol Biochem 39(6):1318–1327
CrossRef
CAS
Google Scholar
Emerson D, Roden E, Twining BS (2012) The microbial ferrous wheel: iron cycling in terrestrial, freshwater, and marine environments. Front Microbiol 3:383
CrossRef
Google Scholar
Eriksson J (2001) Concentrations of 61 trace elements in sewage sludge, farmyard manure, mineral fertiliser, precipitation and in oil and crops. Swedish Environmental Protection Agency Stockholm, Sweden
Google Scholar
European Commission (2016) Eighth Report on the Implementation Status and the Programmes for Implementation (as required by Article 17) of Council Directive 91/271/EEC concerning urban waste water treatment
Google Scholar
Ewert W, Hermanussen O, Kabbe C, Mele C, Niewersch H, Paillard H, Stössel E, Wagenbach A, Steman J (2014) Sustainable sewage sludge management fostering phosphorus recovery and energy efficiency
Google Scholar
Faivre D (2016) Iron oxides: from nature to applications. Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim
CrossRef
Google Scholar
Fischer F, Zufferey G, Sugnaux M, Happe M (2015) Microbial electrolysis cell accelerates phosphate remobilisation from iron phosphate contained in sewage sludge. Environ Sci: Processes Impacts 17(1):90–97
CAS
Google Scholar
Flores-Alsina X, Solon K, Kazadi Mbamba C, Tait S, Gernaey KV, Jeppsson U, Batstone DJ (2016) Modelling phosphorus (P), sulfur (S) and iron (Fe) interactions for dynamic simulations of anaerobic digestion processes. Water Res 95:370–382
CrossRef
CAS
Google Scholar
Franz T (2006) Spatial classification methods for efficient infiltration measurements and transfer of measuring results. PhD, Dresden
Google Scholar
Frossard E, Bauer JP, Lothe F (1997) Evidence of vivianite in FeSO4-flocculated sludges. Water Res 31(10):2449–2454
CrossRef
CAS
Google Scholar
Fulazzaky MA, Salim N, Abdullah NH, Yusoff A, Paul E (2014) Precipitation of iron-hydroxy-phosphate of added ferric iron from domestic wastewater by an alternating aerobic–anoxic process. Chem Eng J 253:291–297
CrossRef
CAS
Google Scholar
Fytianos K, Voudrias E, Raikos N (1998) Modelling of phosphorus removal from aqueous and wastewater samples using ferric iron. Environ Pollut 101(1):123–130
CrossRef
CAS
Google Scholar
Geraarts B, Koetse E, Loeffen P, Reitsma B, Gaillard A (2007) Fosfaatterugwinning uit ijzerarm slib van rioolwaterzuiveringsinrichtingen. STOWA, report 2007–31. ISBN 78.90.5773.380.2, 83 p
Google Scholar
Ghassemi M, Recht HL (1971) Phosphate precipitation with ferrous iron. Water pollution control research series, 64 pp
Google Scholar
Golterman HL (1995) The role of the ironhydroxide-phosphate-sulphide system in the phosphate exchange between sediments and overlying water. Hydrobiologia 297(1):43–54
CrossRef
CAS
Google Scholar
Guedes P, Couto N, Ottosen LM, Kirkelund GM, Mateus E, Ribeiro AB (2016) Valorisation of ferric sewage sludge ashes: potential as a phosphorus source. Waste Manag (New York, NY) 52:193–201
CrossRef
CAS
Google Scholar
Gutierrez O, Park D, Sharma KR, Yuan Z (2010) Iron salts dosage for sulfide control in sewers induces chemical phosphorus removal during wastewater treatment. Water Res 44(11):3467–3475
CrossRef
CAS
Google Scholar
Hansen B. (2017) Kemira, personal communication, explanation and translation of data Statistics Sweden (SCB)
Google Scholar
Heiberg L, Koch CBK, Charlotte J, Henning S, Hansen HBC (2012) Vivianite precipitation and phosphate sorption following iron reduction in anoxic soils. J Environ Qual 41(3):938–949
CrossRef
CAS
Google Scholar
Hermann L (2011) Phosphate fertilizers from sewage sludge ash-design of an industrial manufacturing plant. Proc Water Environ Fed Nutr Recover Manag 2011(1):317–332
CrossRef
Google Scholar
Hermanussen O, Müller-Schapper J, Haun E, Weichgrebe D, Rosenwinkel KH, Esemen T, Dockhorn T, Dichtl N (2012) Wissenschaftliche Begleitung der großtechnischen Anwendung Wissenschaftliche Begleitung der großtechnischen Anwendungder Seaborne-Technologie auf der Kläranlage Gifhorn: – Zusammenfassung der durchgeführten Untersuchungen und technisch-wirtschaftliche Bewertung der Verfahrenstechnik-
Google Scholar
Hvitved-Jacobsen T, Vollertsen J, Nielsen AH (2013) Sewer processes: microbial and chemical process engineering of sewer networks, 2nd edn. CRC Press, Boca Raton
CrossRef
Google Scholar
Jetten M, Horn S, van Loosdrecht MCM (1997) Towards a more sustainable municipal wastewater treatment system. Water Sci Technol 35(9):171–180
CrossRef
CAS
Google Scholar
Kahiluoto H, Kuisma M, Ketoja E, Salo T, Heikkinen J (2015) Phosphorus in manure and sewage sludge more recyclable than in soluble inorganic fertiliser. In revision. Environ Sci Technol 49(4):2115–2122
CrossRef
CAS
Google Scholar
Kang SJ, Olmstead K, Takacs K, Collins J (2008) Municipal nutrient removal technologies reference document, volume 1 – technical report. US Environmental Protection Agency (EPA), 268 pp. http://water.epa.gov/scitech/wastetech/upload/mnrt-volume1.pdf
Karlsson I (2001) Full scale plant recovering iron phosphate from sewage at Helsingborg, Sweden. Proc. 2nd Int.Conf. on Recovery of Phosphates from Sewage and Animal Wastes, CEEP, Holland, 12–14 March 2001
Google Scholar
Kato F, Kitakoji H, Oshita K, Takaoka M, Takeda N, Matsumoto T (2006) Extraction efficiency of phosphate from pre-coagulated sludge with NaHS. Water Sci Technol 54(5):119
CrossRef
CAS
Google Scholar
Kelessidis A, Stasinakis AS (2012) Comparative study of the methods used for treatment and final disposal of sewage sludge in European countries. Waste Manag (New York, N.Y.) 32(6):1186–1195
CrossRef
CAS
Google Scholar
Kidd PS, Dominguez-Rodriguez MJ, Diaz J, Monterroso C (2007) Bioavailability and plant accumulation of heavy metals and phosphorus in agricultural soils amended by long-term application of sewage sludge. Chemosphere 66(8):1458–1467
CrossRef
CAS
Google Scholar
Korving L (2012) Trends in slibontwatering. STOWA, report 2011–46. ISBN 978.90.5773.577.6, 108 p
Google Scholar
Krogstad T, Sogn TA, Asdal Å, Sæbø A (2005) Influence of chemically and biologically stabilized sewage sludge on plant-available phosphorous in soil. Ecol Eng 25(1):51–60
CrossRef
Google Scholar
Langeveld CP, Wolde KWT (2013) Phosphate recycling in mineral fertiliser production. Proceedings, 1466–1314 727. International Fertiliser Society, Leek
Google Scholar
Lasheen MR, Ammar NS (2009) Assessment of metals speciation in sewage sludge and stabilized sludge from different wastewater treatment plants, Greater Cairo, Egypt. J Hazard Mater 164(2–3):740–749
CrossRef
CAS
Google Scholar
Li J (2005) Effects of Fe(III) on floc characteristics of activated sludge. J Chem Technol Biotechnol 80(3):313–319
CrossRef
CAS
Google Scholar
Likosova EM, Keller J, Rozendal RA, Poussade Y, Freguia S (2013) Understanding colloidal FeSx formation from iron phosphate precipitation sludge for optimal phosphorus recovery. J Colloid Interface Sci 403:16–21
CrossRef
CAS
Google Scholar
Lu Q, He ZL, Stoffella PJ (2012) Land application of biosolids in the USA: a review. Appl Environ Soil Sci 2012:1–11
CrossRef
Google Scholar
Lu J, Yang J, Xu K, Hao J, Li YY (2016) Phosphorus release from coprecipitants formed during orthophosphate removal with Fe(III) salt coagulation: effects of pH, Eh, temperature and aging time. J Environ Chem Eng 4(3):3322–3329
CrossRef
CAS
Google Scholar
Luedecke C, Hermanowicz SW, Jenkins D (1989) Precipitation of ferric phosphate in activated-sludge – a chemical model and its verification. Water Sci Technol 21(4–5):325–337
CrossRef
CAS
Google Scholar
Lycke D, Prasad R, Meulenkamp R, Morgenschweis CM, Steensma W (2017) Combining phosphorus recovery and ammonia removal in the Omzet.Amersfoort project. IWA specialist conference on Sludge Management SludgeTech 2017
Google Scholar
Macdonald GK, Bennett EM, Potter PA, Ramankutty N (2011) Agronomic phosphorus imbalances across the world’s croplands. Proc Natl Acad Sci U S A 108(7):3086–3091
CrossRef
Google Scholar
Magdziarz A, Kosowska-Golachowska M, Kijo-Kleczkowska A, Środa K, Wolski K, Richter D, Musiał T, Filipowicz M, Dudek M, Olkuski T, Styszko K (2016) Analysis of sewage sludge ashes from air and oxy-fuel combustion in a circulating fluidized-bed. E3S Web Conf. 10, 54
Google Scholar
Maier W, Weidelener A, Krampe J, Rott I (2005) Entwicklung eines Verfahrens zur Phosphat-Rückgewinnung aus ausgefaultem Nassschlam oder entwässertem Faulschlamm als gut pflanzenverfügbares Magnesium-Ammonium-Phosphat (MAP): Schlussbericht: Teil 1: Zusammenfassung und Wertung der Ergebnisse, 160 pp
Google Scholar
Mamais D, Pitt PA, Cheng YW, Loiacono J, Jenkins D (1994) Determination of ferric chloride dose to control struvite precipitation in anaerobic sludge digesters. Water Environ Res 66(7):912–918
CrossRef
CAS
Google Scholar
Mao Y, Yang S, Yue Q, Wang W (2016) Theoretical and experimental study of the mechanisms of phosphate removal in the system containing Fe(III)-ions. Environ Sci Pollut Res Int 23(23):24265–24276
CrossRef
CAS
Google Scholar
Marchi A, Geerts S, Weemaes M, Schiettecatte W, Wim S, Vanhoof C, Christine V (2015) Full-scale phosphorus recovery from digested waste water sludge in Belgium – part I: technical achievements and challenges. Water Sci Technol 71(4):487–494
CrossRef
CAS
Google Scholar
Marx JJ, Wilson TE, Schroedel RB, Winfield G, Sokhey A (2001) Vivianite nutrient removal’s hidden problem? Proc Water Environ Fed 2001(8):378–388
CrossRef
Google Scholar
Miller M, O’Connor GA (2009) The longer-term phytoavailability of biosolids-phosphorus. Agron J 101(4):889
CrossRef
CAS
Google Scholar
Miot J, Benzerara K, Morin G, Bernard S, Beyssac O, Larquet E, Kappler A, Guyot F (2009) Transformation of vivianite by anaerobic nitrate-reducing iron-oxidizing bacteria. Geobiology 7(3):373–384
CrossRef
CAS
Google Scholar
Mishima I, Nakajima J (2011) Application of iron electrolysis to full-scale activated sludge process for phosphorus removal. J Wat Environ Tech 9(4):359–369
CrossRef
Google Scholar
Morse G, Brett S, Guy J, Lester J (1998) Review: phosphorus removal and recovery technologies. Sci Total Environ 212(1):69–81
CrossRef
CAS
Google Scholar
Nanzer S, Oberson A, Berger L, Berset E, Hermann L, Frossard E (2014) The plant availability of phosphorus from thermo-chemically treated sewage sludge ashes as studied by 33P labeling techniques. Plant Soil 377(1–2):439–456
CrossRef
CAS
Google Scholar
Neethling JB, Benisch M (2004) Struvite control through process and facility design as well as operation strategy. Water Sci Technol 49(2):191–199
CrossRef
CAS
Google Scholar
Nielsen P (1996) The significance of microbial Fe(III) reduction in the activated sludge process. Water Sci Technol 34(5–6):129–136
CrossRef
CAS
Google Scholar
Nielsen AH, Lens P, Vollertsen J, Hvitved-Jacobsen T (2005) Sulfide–iron interactions in domestic wastewater from a gravity sewer. Water Res 39(12):2747–2755
CrossRef
CAS
Google Scholar
Nowak O, Keil S, Fimml C (2011) Examples of energy self-sufficient municipal nutrient removal plants. Water Sci Technol 64(1):1
CrossRef
CAS
Google Scholar
Nriagu JO (1972) Stability of vivianite and ion-pair formation in the system fe3(PO4)2-H3PO4H3PO4-H2o. Geochim Cosmochim Acta 36(4):459–470
CrossRef
CAS
Google Scholar
Nriagu JO, Dell CI (1974) Diagenetic formation of iron phosphates in recent lake sediments. Am Mineral 59:934–946
CAS
Google Scholar
Nriagu JO, Moore PB (1984) Phosphate minerals. Springer Berlin Heidelberg, Berlin
CrossRef
Google Scholar
O’Connor GA, Sarkar D, Brinton SR, Elliott HA, Martin FG (2004) Phytoavailability of biosolids phosphorus. J Environ Qual 33(2):703
CrossRef
Google Scholar
Odegaard H, Paulsrud B, Karlsson I (2002) Wastewater sludge as a resource: sludge disposal strategies and corresponding treatment technologies aimed at sustainable handling of wastewater sludge. Water Sci Technol 46(10):295–303
CrossRef
CAS
Google Scholar
Ofwat (2005) Water framework directive economic analysis of water industry costs
Google Scholar
Ogilvie D (1998) National study of the composition of sewage sludge. Drainage Managers Group, a subgroup of the New Zealand Water and Wastes Association, Auckland [N.Z.]
Google Scholar
Ohtake H (2017) CPR share in Japan
Google Scholar
Ohtake H, Okano K (2015) Development and implementation of technologies for recycling phosphorus in secondary resources in Japan. Glob Environ Res 19:49–65
Google Scholar
Oleszkiewicz J (2014) Options for improved nutrient removal and recovery from municipal wastewater in the Canadian context
Google Scholar
Oleszkiewicz J, Kruk D, Devlin T, Lashkarizadeh M, Qiuyan Y (2015) Options for improved nutrient removal and recovery from municipal wastewater in the Canadian context. Canadian Water Network
Google Scholar
Ottosen LM, Kirkelund GM, Jensen PE (2013) Extracting phosphorous from incinerated sewage sludge ash rich in iron or aluminum. Chemosphere 91(7):963–969
CrossRef
CAS
Google Scholar
Patrick WH, Gotoh S, Williams BG (1973) Strengite dissolution in flooded soils and sediments. Science 179(4073):564–565
CrossRef
CAS
Google Scholar
Paul E, Laval ML, Sperandio M (2001) Excess sludge production and costs due to phosphorus removal. Environ Technol 22:1363–1371
CrossRef
CAS
Google Scholar
Peretyazhko T, Sposito G (2005) Iron(III) reduction and phosphorous solubilization in humid tropical forest soils. Geochim Cosmochim Acta 69(14):3643–3652
CrossRef
CAS
Google Scholar
Petzet S, Peplinski B, Cornel P (2012) On wet chemical phosphorus recovery from sewage sludge ash by acidic or alkaline leaching and an optimized combination of both. Water Res 46(12):3769–3780
CrossRef
CAS
Google Scholar
Pham AN, Rose AL, Feltz AJ, Waite TD (2004) The effect of dissolved natural organic matter on the rate of removal of ferrous iron in fresh waters. In: Natural organic material research: innovations and applications for drinking water. IWA Publishing, pp 213–219
Google Scholar
Poffet MS (2007) Thermal runaway of the dried sewage sludge in the storage tanks: from molecular origins to technical measures of smouldering fire prevention. Dissertation thesis
Google Scholar
Prochnow LI, Chien SH, Carmona G, Dillard EF, Henao J, Austin ER (2008) Plant availability of phosphorus in four superphosphate fertilizers varying in water-insoluble phosphate compounds. Soil Sci Soc Am J 72(2):462
CrossRef
CAS
Google Scholar
Rapf M, Raupenstrauch H, Cimatoribus C, Kranert M (2012) A new thermo-chemical approach for the recovery of phosphorus from sewage sludge
Google Scholar
Rasmussen H, Nielsen P (1996) Iron reduction in activated sludge measured with different extraction techniques. Water Res 30(3):551–558
CrossRef
CAS
Google Scholar
Reusser SR (2009) Proceed with caution in advanced anaerobic digestion system design. Proceedings of the Water Environment Federation Session 41 through Session 50 (3065–3084)
CrossRef
Google Scholar
Richardson CJ (1985) Mechanisms controlling phosphorus retention capacity in freshwater wetlands. Science 228(4706):1424–1427
CrossRef
CAS
Google Scholar
Roden EE, Edmonds JW (1997) Phosphate mobilization in iron-rich anaerobic sediments: microbial Fe(III) oxide reduction versus iron-sulfide formation. Arch Hydrobiol 139(3):347–378
CAS
Google Scholar
Rodgers KA, Henderson GS (1986) The thermochemistry of some iron phosphate minerals: vivianite, metavivianite, baraćite, ludlamite and vivianite/metavivianite admixtures. Thermochim Acta 104:1–12
CrossRef
CAS
Google Scholar
Roldan R, Barron V, Torrent J (2002) Experimental alteration of vivianite to lepidocrocite in a calcareous medium. Clay Miner 37(4):709–718
CrossRef
CAS
Google Scholar
Römer W (2006) Vergleichende Untersuchungen zur Pflanzenverfügbarkeit von Phosphat aus verschiedenen P-Recycling-Produkten im Keimpflanzenversuch. J Plant Nutr Soil Sci 169(6):826–832
CrossRef
CAS
Google Scholar
Rothe M, Kleeberg A, Hupfer M (2016) The occurrence, identification and environmental relevance of vivianite in waterlogged soils and aquatic sediments. Earth Sci Rev 158:51–64
CrossRef
CAS
Google Scholar
Samie IF, Römer W (2001) Phosphorus availability to maize plants from sewage sludge treated with Fe compounds. In: Horst WJ, Schenk MK, Bürkert A, Claassen N, Flessa H, Frommer WB, Goldbach H, Olfs H-W, Römheld V, Sattelmacher B, Schmidhalter U, Schubert S, Wirén N v, Wittenmayer L (eds) Plant nutrition. Springer Netherlands, Dordrecht, pp 846–847
CrossRef
Google Scholar
Sano A, Kanomata M, Inoue H, Sugiura N, Xu K-Q, Inamori Y (2012) Extraction of raw sewage sludge containing iron phosphate for phosphorus recovery. Chemosphere 89(10):1243–1247
CrossRef
CAS
Google Scholar
SCB (2016) Utsläpp till vatten och slamproduktion 2014 Kommunala reningsverk, massa- och pappersindustri samt viss övrig industri. Statistiska centralbyran
Google Scholar
Schipper WJ, Korving L (2009) Full-scale plant test using sewage sludge ash as raw material for phosphorus production. In: Proceedings of International Conference on Nutrient Recovery, May 2009
Google Scholar
Schröder JJ, Cordell D, Smit AL, Rosemarin A (2010) Sustainable use of phosphorus. Wageningen University and Research Centre, 140 pp
Google Scholar
Schröder JJ, Smit AL, Cordell D, Rosemarin A (2011) Improved phosphorus use efficiency in agriculture: a key requirement for its sustainable use. Chemosphere 84(6):822–831
CrossRef
CAS
Google Scholar
Schwertmann U, Cornell RM (2000) Iron oxides in the laboratory: preparation and characterization, 2nd completely rev. and extended edn. Wiley-VCH, Weinheim
CrossRef
Google Scholar
Shimp GF, Barnard JL, Bott CB (2013) Seeking to understand and address the impacts of biological phosphorus removal on biosolids dewatering. Proc Water Environ Fed 2013(9):5668–5685
CrossRef
Google Scholar
Singer PC (1972) Anaerobic control of phosphate by ferrous iron: anaerobic control of phosphate by ferrous iron. J Water Pollut Control Fed 44(4):663
CAS
Google Scholar
Smith S, Takacs I, Murthy S, Daigger GT, Szabo A (2008) Phosphate complexation model and its implications for chemical phosphorus removal. Water Environ Res 80(5):428–438
CAS
Google Scholar
Smolders AJP, Lamers LPM, Lucassen ECHET, Van Der Velde G, Roelofs JGM (2006) Internal eutrophication: how it works and what to do about it – a review. Chem Ecol 22(2):93–111
CrossRef
CAS
Google Scholar
Stumm W, Morgan JJ (1996) Aquatic chemistry: chemical equilibria and rates in natural waters, Environmental science and technology, 3rd edn. Wiley, New York
Google Scholar
Stumm W, Sigg L, Sulzberger B (1992) Chemistry of the solid-water interface: processes at the mineral-water and particle-water in natural systems, A Wiley-Interscience publication. Wiley, New York
Google Scholar
Suschka J, Machnicka A, Poplawski S (2001) Phosphate recovery from iron phosphate sludge. Environ Technol 22:1295–1301
CrossRef
CAS
Google Scholar
Takács I, Murthy S, Smith S, McGrath M (2006) Chemical phosphorus removal to extremely low levels: experience of two plants in the Washington, DC area. Water Sci Technol 53(12):21
CrossRef
CAS
Google Scholar
Taylor KG, Hudson-Edwards KA, Bennett AJ, Vishnyakov V (2008) Early diagenetic vivianite [Fe3(PO4)2·8H2O] in a contaminated freshwater sediment and insights into zinc uptake: a μ-EXAFS, μ-XANES and Raman study. Appl Geochem 23(6):1623–1633
CrossRef
CAS
Google Scholar
Tchobanoglous G, Burton FL, Stensel HD (2013) Wastewater engineering: treatment and reuse, 5th edn. McGraw-Hill Higher Education; McGraw-Hill [distributor], New York
Google Scholar
Theis TL, Singer PC (1974) Complexation of iron(II) by organic matter and its effect on iron(II) oxygenation. Environ Sci Technol 8(6):569–573
CrossRef
CAS
Google Scholar
Thistleton J, Clark T, Pearce P, Parsons SA (2001) Mechanisms of chemical phosphorus removal. Process Saf Environ Prot 79(6):339–344
CrossRef
CAS
Google Scholar
Tilley (2005) Supplementary material to part 3: reactions and transformations. In: Understanding solids. Wiley, pp 531–542
Google Scholar
USEPA (2009) Targeted national sewage sludge survey sampling and analysis technical report (January)
Google Scholar
van den Brand TPH, Roest K, Chen GH, Brdjanovic D, van Loosdrecht MCM (2015) Occurrence and activity of sulphate reducing bacteria in aerobic activated sludge systems. World J Microbiol Biotechnol 31(3):507–516
CrossRef
CAS
Google Scholar
van der Grift B, Behrends T, Osté LA, Schot PP, Wassen MJ, Griffioen J (2016) Fe hydroxyphosphate precipitation and Fe(II) oxidation kinetics upon aeration of Fe(II) and phosphate-containing synthetic and natural solutions. Geochim Cosmochim Acta 186:71–90
CrossRef
CAS
Google Scholar
Waerenborgh JC, Figueiredo MO (1986) X-ray powder diffraction and 57 Fe Mössbauer spectroscopy study of the thermal breakdown of vivianite, Fe3(PO4)2x8H2O. Hyperfine Interact 29(1):1101–1104
CrossRef
CAS
Google Scholar
WEF (2011) Nutrient removal, WEF manual of practice no. 34. McGraw-Hill; WEF Press, New York
Google Scholar
Weigand H, Bertau M, Bohndick F, Bruckert A (2011) RECOPHOS: recophos: full scale recovery of phosphate from sewage sludge ash. Sardinia 2011, Thirteenth International Waste Management and Landfill Symposium
Google Scholar
Wendt Von H (1973) Die Kinetik typischer Hydrolysereaktionen von mehrwertigen Kationen. Chimia 27:575–588
Google Scholar
Wilfert P, Suresh Kumar P, Korving L, Witkamp GJ, van Loosdrecht MCM (2015) The relevance of phosphorus and iron chemistry to the recovery of phosphorus from wastewater: a review. Environ Sci Technol 104:449
Google Scholar
Wilfert P, Mandalidis A, Dugulan I, Goubitz K, Korving L, Temmink H, Witkamp GJ, van Loosdrecht M (2016) Vivianite as an important iron phosphate precipitate in sewage treatment plants. Water Res 104:449
CrossRef
CAS
Google Scholar
Xu Y, Hu H, Liu J, Luo J, Qian G, Wang A (2015) pH dependent phosphorus release from waste activated sludge: contributions of phosphorus speciation. Chem Eng J 267:260–265
CrossRef
CAS
Google Scholar
Yoon SY, Lee CG, Park JA, Kim JH, Kim SB, Lee SH, Choi JW (2014) Kinetic, equilibrium and thermodynamic studies for phosphate adsorption to magnetic iron oxide nanoparticles. Chem Eng J 236:341–347
CrossRef
CAS
Google Scholar
Zhang X (2012) Factors influencing iron reduction–induced phosphorus precipitation. Environ Eng Sci 29(6):511–519
CrossRef
CAS
Google Scholar