Effect of Iron on Phosphate Recovery from Sewage Sludge

  • Leon KorvingEmail author
  • Mark Van Loosdrecht
  • Philipp Wilfert


Iron is omnipresent in sewage treatment systems. It can unintentionally be present because of, e.g., groundwater seepage into sewers, or it is intentionally added for odor and corrosion control, phosphate removal, or prevention of hydrogen sulfide emissions. The strong affinity of iron for phosphate has advantages for efficient removal of phosphate from sewage, but it is also often considered a disadvantage for phosphate recovery. For instance, the strong affinity between iron and phosphate may reduce recovery efficiencies via struvite precipitation or for some phosphate recovery methods from ash. On the other hand, iron may also have positive effects on phosphate recovery. Acid consumption was reported to be lower when leaching phosphate from sewage sludge ash with higher iron content. Also, phosphate recovery efficiencies may be higher if a Fe-P compound like vivianite (Fe3(PO4)2 8H2O) could be harvested from sewage sludge. Developers of phosphate recovery technologies should be aware of the potential and obstacles the iron and phosphate chemistry bears.


Vivianite Iron Chemical phosphate removal Struvite recovery Sewage sludge 



This work was performed in the TTIW-cooperation framework of Wetsus, European Centre of Excellence for Sustainable Water Technology ( Wetsus is funded by the Dutch Ministry of Economic Affairs, the European Union Regional Development Fund, the Province of Fryslân, the City of Leeuwarden, and the EZ/Kompas program of the “Samenwerkingsverband Noord-Nederland.” We thank the participants of the research theme “Phosphate Recovery” for their financial support and helpful discussions. Furthermore, we acknowledge the valuable support from Anna Jeworrek for her contribution to the section on the alkaline treatment of sewage sludge.


  1. ACHS (2009) Review of the feasibility of recycling phosphates at sewage treatment plants in The UK – executive summary. Department for Environment, Food and Rural Affairs, 32 ppGoogle Scholar
  2. Adam C, Peplinski B, Michaelis M, Kley G, Simon F-G (2009) Thermochemical treatment of sewage sludge ashes for phosphorus recovery. Waste Manag (New York, NY) 29(3):1122–1128CrossRefGoogle Scholar
  3. Antakyali D, Meyer C, Preyl V, Maier W, Steinmetz H (2013) Large-scale application of nutrient recovery from digested sludge as struvite. Water Pract Technol 8(2):256–262CrossRefGoogle Scholar
  4. Azam HM, Finneran KT (2014) Fe(III) reduction-mediated phosphate removal as vivianite (Fe3(PO4)2·8H2O) in septic system wastewater. Chemosphere 97:1–9CrossRefGoogle Scholar
  5. Baker S, Lee Y, Li W (2006) A struvite control and phosphorus removal process for centrate: full-scale testing. Proc Water Environ Fed 2006(7):5197–5208CrossRefGoogle Scholar
  6. Beecher N, Crawford C, Goldstein N, Kester G, Lono-Batura M, Dziezyk E (2007) A national biosolid regulation, quality, end use & disposal survey: final report. North East Biosolids and Residuals Association, TamworthGoogle Scholar
  7. Biswas BK, Inoue K, Harada H, Ohto K, Kawakita H (2009) Leaching of phosphorus from incinerated sewage sludge ash by means of acid extraction followed by adsorption on orange waste gel. J Environ Sci 21(12):1753–1760CrossRefGoogle Scholar
  8. Bjorn A (2010) Acid phase digestion at Derby STW – Context and preliminary optimisation resultsGoogle Scholar
  9. Böhnke B (1977) Das Adsorptions-Belebungsverfahren. Korrespondenz Abwasser 24:33Google Scholar
  10. Borch T, Fendorf S (2007) Phosphate interactions with iron (Hydr)oxides: mineralization pathways and phosphorus retention upon bioreduction. In: Adsorption of metals by Geomedia II: variables, mechanisms, and model applications, vol. 7. Developments in Earth and Environmental Sciences. Elsevier, p 321–348Google Scholar
  11. Boström B, Pettersson K (1982) Different patterns of phosphorus release from lake sediments in laboratory experiments. Hydrobiologia 91–92(1):415–429CrossRefGoogle Scholar
  12. Brandt RC, Elliott HA, O’Connor GA (2004) Water-extractable phosphorus in biosolids: implications for land-based recycling. Water Environ Res 76(2):121–129CrossRefGoogle Scholar
  13. Caraco NF, Cole JJ, Likens GE (1989) Evidence for sulphate-controlled phosphate release from sediments of aquatic systems. Nature 341:316–318CrossRefGoogle Scholar
  14. Čermáková Z, Švarcová S, Hradilová J, Bezdička P, Lančok A, Vašutová V, Blažek J, Hradil D (2015) Temperature-related degradation and colour changes of historic paintings containing vivianite. Spectrochim Acta A Mol Biomol Spectrosc 140:101–110CrossRefGoogle Scholar
  15. Chen Y, Cheng JJ, Creamer KS (2008) Inhibition of anaerobic digestion process: a review. Bioresour Technol 99(10):4044–4064CrossRefGoogle Scholar
  16. Chen J, Bai J, Chen H, Graetz J (2011) In situ hydrothermal synthesis of LiFePO 4 studied by synchrotron X-ray diffraction. J Phys Chem Lett 2(15):1874–1878CrossRefGoogle Scholar
  17. Cheng X, Chen B, Cui Y, Sun D, Wang X (2015) Iron(III) reduction-induced phosphate precipitation during anaerobic digestion of waste activated sludge. Sep Purif Technol 143:6–11CrossRefGoogle Scholar
  18. Coats ER, Watkins DL, Kranenburg D (2011) A comparative environmental life-cycle analysis for removing phosphorus from wastewater: biological versus physical/chemical processes. Water Environ Res 83(8):750CrossRefGoogle Scholar
  19. Cooper J (2014) Managing phosphorus in the UK water industry to increase national resource security. PhD, BirminghamGoogle Scholar
  20. Cornel P, Schaum C (2009) Phosphorus recovery from wastewater: needs, technologies and costs. Water Sci Technol 59(6):1069–1076CrossRefGoogle Scholar
  21. Cornel P, Jardin N, Schaum C (2004) Möglichkeiten einer Rückgewinnung von Phosphor aus Klärschlammasche: Teil 1: Ergebnisse von Laborversuchen zur Extraktion von Phosphor. GWF Wasser 145(9):627–632Google Scholar
  22. Cullen N, Baur R, Schauer P (2013) Three years of operation of North America’s first nutrient recovery facility. Water Sci Technol 68(4):763–768CrossRefGoogle Scholar
  23. Cyr M, Coutand M, Clastres P (2007) Technological and environmental behavior of sewage sludge ash (SSA) in cement-based materials. Cem Concr Res 37(8):1278–1289CrossRefGoogle Scholar
  24. Da Silva S, Basséguy R, Bergel A (2004) Hydrogenase-catalysed deposition of vivianite on mild steel. Electrochim Acta 49(13):2097–2103CrossRefGoogle Scholar
  25. Delahaye M (2017) Phosphorus recovery from wastewater: SUEZ’s Phosphogreen technology successfully running in Denmark. IWA specialist conference on Sludge Management SludgeTech 2017Google Scholar
  26. Der Schweizerische Bundesrat (2015) Verordnung über die Vermeidung und die Entsorgung von AbfällenGoogle Scholar
  27. Desmidt E, Ghyselbrecht K, Zhang Y, Pinoy L, Van der Bruggen B, Verstraete W, Rabaey K, Meesschaert B (2015) Global phosphorus scarcity and full-scale P-recovery techniques: a review. Crit Rev Environ Sci Technol 45(4):336–384CrossRefGoogle Scholar
  28. Deutscher Bundestag (2017) Verordnung zur Neuordnung der KlärschlammverwertungGoogle Scholar
  29. Donatello S, Cheeseman CR (2013) Recycling and recovery routes for incinerated sewage sludge ash (ISSA): a review. Waste Manag (New York, N.Y.) 33(11):2328–2340CrossRefGoogle Scholar
  30. Doyle JD, Parsons SA (2002) Struvite formation, control and recovery. Water Res 36(16):3925–3940CrossRefGoogle Scholar
  31. DWA (2005) Stand der Klarschlammbehandlung und Entsorgung in Deutschland. ISBN 3-937758-29-1, 66 pGoogle Scholar
  32. Egle L, Rechberger H, Zessner M (2014) Endbericht Phosphorrückgewinnung aus dem Abwasser, Wien, 323 ppGoogle Scholar
  33. Egle L, Rechberger H, Zessner M (2015) Overview and description of technologies for recovering phosphorus from municipal wastewater. Resour Conserv Recycl 105:325–346CrossRefGoogle Scholar
  34. Elliott H, O’Connor G (2007) Phosphorus management for sustainable biosolids recycling in the United States. Soil Biol Biochem 39(6):1318–1327CrossRefGoogle Scholar
  35. Emerson D, Roden E, Twining BS (2012) The microbial ferrous wheel: iron cycling in terrestrial, freshwater, and marine environments. Front Microbiol 3:383CrossRefGoogle Scholar
  36. Eriksson J (2001) Concentrations of 61 trace elements in sewage sludge, farmyard manure, mineral fertiliser, precipitation and in oil and crops. Swedish Environmental Protection Agency Stockholm, SwedenGoogle Scholar
  37. European Commission (2016) Eighth Report on the Implementation Status and the Programmes for Implementation (as required by Article 17) of Council Directive 91/271/EEC concerning urban waste water treatmentGoogle Scholar
  38. Ewert W, Hermanussen O, Kabbe C, Mele C, Niewersch H, Paillard H, Stössel E, Wagenbach A, Steman J (2014) Sustainable sewage sludge management fostering phosphorus recovery and energy efficiencyGoogle Scholar
  39. Faivre D (2016) Iron oxides: from nature to applications. Wiley-VCH Verlag GmbH & Co. KGaA, WeinheimCrossRefGoogle Scholar
  40. Fischer F, Zufferey G, Sugnaux M, Happe M (2015) Microbial electrolysis cell accelerates phosphate remobilisation from iron phosphate contained in sewage sludge. Environ Sci: Processes Impacts 17(1):90–97Google Scholar
  41. Flores-Alsina X, Solon K, Kazadi Mbamba C, Tait S, Gernaey KV, Jeppsson U, Batstone DJ (2016) Modelling phosphorus (P), sulfur (S) and iron (Fe) interactions for dynamic simulations of anaerobic digestion processes. Water Res 95:370–382CrossRefGoogle Scholar
  42. Franz T (2006) Spatial classification methods for efficient infiltration measurements and transfer of measuring results. PhD, DresdenGoogle Scholar
  43. Frossard E, Bauer JP, Lothe F (1997) Evidence of vivianite in FeSO4-flocculated sludges. Water Res 31(10):2449–2454CrossRefGoogle Scholar
  44. Fulazzaky MA, Salim N, Abdullah NH, Yusoff A, Paul E (2014) Precipitation of iron-hydroxy-phosphate of added ferric iron from domestic wastewater by an alternating aerobic–anoxic process. Chem Eng J 253:291–297CrossRefGoogle Scholar
  45. Fytianos K, Voudrias E, Raikos N (1998) Modelling of phosphorus removal from aqueous and wastewater samples using ferric iron. Environ Pollut 101(1):123–130CrossRefGoogle Scholar
  46. Geraarts B, Koetse E, Loeffen P, Reitsma B, Gaillard A (2007) Fosfaatterugwinning uit ijzerarm slib van rioolwaterzuiveringsinrichtingen. STOWA, report 2007–31. ISBN 78.90.5773.380.2, 83 pGoogle Scholar
  47. Ghassemi M, Recht HL (1971) Phosphate precipitation with ferrous iron. Water pollution control research series, 64 ppGoogle Scholar
  48. Golterman HL (1995) The role of the ironhydroxide-phosphate-sulphide system in the phosphate exchange between sediments and overlying water. Hydrobiologia 297(1):43–54CrossRefGoogle Scholar
  49. Guedes P, Couto N, Ottosen LM, Kirkelund GM, Mateus E, Ribeiro AB (2016) Valorisation of ferric sewage sludge ashes: potential as a phosphorus source. Waste Manag (New York, NY) 52:193–201CrossRefGoogle Scholar
  50. Gutierrez O, Park D, Sharma KR, Yuan Z (2010) Iron salts dosage for sulfide control in sewers induces chemical phosphorus removal during wastewater treatment. Water Res 44(11):3467–3475CrossRefGoogle Scholar
  51. Hansen B. (2017) Kemira, personal communication, explanation and translation of data Statistics Sweden (SCB)Google Scholar
  52. Heiberg L, Koch CBK, Charlotte J, Henning S, Hansen HBC (2012) Vivianite precipitation and phosphate sorption following iron reduction in anoxic soils. J Environ Qual 41(3):938–949CrossRefGoogle Scholar
  53. Hermann L (2011) Phosphate fertilizers from sewage sludge ash-design of an industrial manufacturing plant. Proc Water Environ Fed Nutr Recover Manag 2011(1):317–332CrossRefGoogle Scholar
  54. Hermanussen O, Müller-Schapper J, Haun E, Weichgrebe D, Rosenwinkel KH, Esemen T, Dockhorn T, Dichtl N (2012) Wissenschaftliche Begleitung der großtechnischen Anwendung Wissenschaftliche Begleitung der großtechnischen Anwendungder Seaborne-Technologie auf der Kläranlage Gifhorn: – Zusammenfassung der durchgeführten Untersuchungen und technisch-wirtschaftliche Bewertung der Verfahrenstechnik-Google Scholar
  55. Hvitved-Jacobsen T, Vollertsen J, Nielsen AH (2013) Sewer processes: microbial and chemical process engineering of sewer networks, 2nd edn. CRC Press, Boca RatonCrossRefGoogle Scholar
  56. Jetten M, Horn S, van Loosdrecht MCM (1997) Towards a more sustainable municipal wastewater treatment system. Water Sci Technol 35(9):171–180CrossRefGoogle Scholar
  57. Kahiluoto H, Kuisma M, Ketoja E, Salo T, Heikkinen J (2015) Phosphorus in manure and sewage sludge more recyclable than in soluble inorganic fertiliser. In revision. Environ Sci Technol 49(4):2115–2122CrossRefGoogle Scholar
  58. Kang SJ, Olmstead K, Takacs K, Collins J (2008) Municipal nutrient removal technologies reference document, volume 1 – technical report. US Environmental Protection Agency (EPA), 268 pp.
  59. Karlsson I (2001) Full scale plant recovering iron phosphate from sewage at Helsingborg, Sweden. Proc. 2nd Int.Conf. on Recovery of Phosphates from Sewage and Animal Wastes, CEEP, Holland, 12–14 March 2001Google Scholar
  60. Kato F, Kitakoji H, Oshita K, Takaoka M, Takeda N, Matsumoto T (2006) Extraction efficiency of phosphate from pre-coagulated sludge with NaHS. Water Sci Technol 54(5):119CrossRefGoogle Scholar
  61. Kelessidis A, Stasinakis AS (2012) Comparative study of the methods used for treatment and final disposal of sewage sludge in European countries. Waste Manag (New York, N.Y.) 32(6):1186–1195CrossRefGoogle Scholar
  62. Kidd PS, Dominguez-Rodriguez MJ, Diaz J, Monterroso C (2007) Bioavailability and plant accumulation of heavy metals and phosphorus in agricultural soils amended by long-term application of sewage sludge. Chemosphere 66(8):1458–1467CrossRefGoogle Scholar
  63. Korving L (2012) Trends in slibontwatering. STOWA, report 2011–46. ISBN 978.90.5773.577.6, 108 pGoogle Scholar
  64. Krogstad T, Sogn TA, Asdal Å, Sæbø A (2005) Influence of chemically and biologically stabilized sewage sludge on plant-available phosphorous in soil. Ecol Eng 25(1):51–60CrossRefGoogle Scholar
  65. Langeveld CP, Wolde KWT (2013) Phosphate recycling in mineral fertiliser production. Proceedings, 1466–1314 727. International Fertiliser Society, LeekGoogle Scholar
  66. Lasheen MR, Ammar NS (2009) Assessment of metals speciation in sewage sludge and stabilized sludge from different wastewater treatment plants, Greater Cairo, Egypt. J Hazard Mater 164(2–3):740–749CrossRefGoogle Scholar
  67. Li J (2005) Effects of Fe(III) on floc characteristics of activated sludge. J Chem Technol Biotechnol 80(3):313–319CrossRefGoogle Scholar
  68. Likosova EM, Keller J, Rozendal RA, Poussade Y, Freguia S (2013) Understanding colloidal FeSx formation from iron phosphate precipitation sludge for optimal phosphorus recovery. J Colloid Interface Sci 403:16–21CrossRefGoogle Scholar
  69. Lu Q, He ZL, Stoffella PJ (2012) Land application of biosolids in the USA: a review. Appl Environ Soil Sci 2012:1–11CrossRefGoogle Scholar
  70. Lu J, Yang J, Xu K, Hao J, Li YY (2016) Phosphorus release from coprecipitants formed during orthophosphate removal with Fe(III) salt coagulation: effects of pH, Eh, temperature and aging time. J Environ Chem Eng 4(3):3322–3329CrossRefGoogle Scholar
  71. Luedecke C, Hermanowicz SW, Jenkins D (1989) Precipitation of ferric phosphate in activated-sludge – a chemical model and its verification. Water Sci Technol 21(4–5):325–337CrossRefGoogle Scholar
  72. Lycke D, Prasad R, Meulenkamp R, Morgenschweis CM, Steensma W (2017) Combining phosphorus recovery and ammonia removal in the Omzet.Amersfoort project. IWA specialist conference on Sludge Management SludgeTech 2017Google Scholar
  73. Macdonald GK, Bennett EM, Potter PA, Ramankutty N (2011) Agronomic phosphorus imbalances across the world’s croplands. Proc Natl Acad Sci U S A 108(7):3086–3091CrossRefGoogle Scholar
  74. Magdziarz A, Kosowska-Golachowska M, Kijo-Kleczkowska A, Środa K, Wolski K, Richter D, Musiał T, Filipowicz M, Dudek M, Olkuski T, Styszko K (2016) Analysis of sewage sludge ashes from air and oxy-fuel combustion in a circulating fluidized-bed. E3S Web Conf. 10, 54Google Scholar
  75. Maier W, Weidelener A, Krampe J, Rott I (2005) Entwicklung eines Verfahrens zur Phosphat-Rückgewinnung aus ausgefaultem Nassschlam oder entwässertem Faulschlamm als gut pflanzenverfügbares Magnesium-Ammonium-Phosphat (MAP): Schlussbericht: Teil 1: Zusammenfassung und Wertung der Ergebnisse, 160 ppGoogle Scholar
  76. Mamais D, Pitt PA, Cheng YW, Loiacono J, Jenkins D (1994) Determination of ferric chloride dose to control struvite precipitation in anaerobic sludge digesters. Water Environ Res 66(7):912–918CrossRefGoogle Scholar
  77. Mao Y, Yang S, Yue Q, Wang W (2016) Theoretical and experimental study of the mechanisms of phosphate removal in the system containing Fe(III)-ions. Environ Sci Pollut Res Int 23(23):24265–24276CrossRefGoogle Scholar
  78. Marchi A, Geerts S, Weemaes M, Schiettecatte W, Wim S, Vanhoof C, Christine V (2015) Full-scale phosphorus recovery from digested waste water sludge in Belgium – part I: technical achievements and challenges. Water Sci Technol 71(4):487–494CrossRefGoogle Scholar
  79. Marx JJ, Wilson TE, Schroedel RB, Winfield G, Sokhey A (2001) Vivianite nutrient removal’s hidden problem? Proc Water Environ Fed 2001(8):378–388CrossRefGoogle Scholar
  80. Miller M, O’Connor GA (2009) The longer-term phytoavailability of biosolids-phosphorus. Agron J 101(4):889CrossRefGoogle Scholar
  81. Miot J, Benzerara K, Morin G, Bernard S, Beyssac O, Larquet E, Kappler A, Guyot F (2009) Transformation of vivianite by anaerobic nitrate-reducing iron-oxidizing bacteria. Geobiology 7(3):373–384CrossRefGoogle Scholar
  82. Mishima I, Nakajima J (2011) Application of iron electrolysis to full-scale activated sludge process for phosphorus removal. J Wat Environ Tech 9(4):359–369CrossRefGoogle Scholar
  83. Morse G, Brett S, Guy J, Lester J (1998) Review: phosphorus removal and recovery technologies. Sci Total Environ 212(1):69–81CrossRefGoogle Scholar
  84. Nanzer S, Oberson A, Berger L, Berset E, Hermann L, Frossard E (2014) The plant availability of phosphorus from thermo-chemically treated sewage sludge ashes as studied by 33P labeling techniques. Plant Soil 377(1–2):439–456CrossRefGoogle Scholar
  85. Neethling JB, Benisch M (2004) Struvite control through process and facility design as well as operation strategy. Water Sci Technol 49(2):191–199CrossRefGoogle Scholar
  86. Nielsen P (1996) The significance of microbial Fe(III) reduction in the activated sludge process. Water Sci Technol 34(5–6):129–136CrossRefGoogle Scholar
  87. Nielsen AH, Lens P, Vollertsen J, Hvitved-Jacobsen T (2005) Sulfide–iron interactions in domestic wastewater from a gravity sewer. Water Res 39(12):2747–2755CrossRefGoogle Scholar
  88. Nowak O, Keil S, Fimml C (2011) Examples of energy self-sufficient municipal nutrient removal plants. Water Sci Technol 64(1):1CrossRefGoogle Scholar
  89. Nriagu JO (1972) Stability of vivianite and ion-pair formation in the system fe3(PO4)2-H3PO4H3PO4-H2o. Geochim Cosmochim Acta 36(4):459–470CrossRefGoogle Scholar
  90. Nriagu JO, Dell CI (1974) Diagenetic formation of iron phosphates in recent lake sediments. Am Mineral 59:934–946Google Scholar
  91. Nriagu JO, Moore PB (1984) Phosphate minerals. Springer Berlin Heidelberg, BerlinCrossRefGoogle Scholar
  92. O’Connor GA, Sarkar D, Brinton SR, Elliott HA, Martin FG (2004) Phytoavailability of biosolids phosphorus. J Environ Qual 33(2):703CrossRefGoogle Scholar
  93. Odegaard H, Paulsrud B, Karlsson I (2002) Wastewater sludge as a resource: sludge disposal strategies and corresponding treatment technologies aimed at sustainable handling of wastewater sludge. Water Sci Technol 46(10):295–303CrossRefGoogle Scholar
  94. Ofwat (2005) Water framework directive economic analysis of water industry costsGoogle Scholar
  95. Ogilvie D (1998) National study of the composition of sewage sludge. Drainage Managers Group, a subgroup of the New Zealand Water and Wastes Association, Auckland [N.Z.]Google Scholar
  96. Ohtake H (2017) CPR share in JapanGoogle Scholar
  97. Ohtake H, Okano K (2015) Development and implementation of technologies for recycling phosphorus in secondary resources in Japan. Glob Environ Res 19:49–65Google Scholar
  98. Oleszkiewicz J (2014) Options for improved nutrient removal and recovery from municipal wastewater in the Canadian contextGoogle Scholar
  99. Oleszkiewicz J, Kruk D, Devlin T, Lashkarizadeh M, Qiuyan Y (2015) Options for improved nutrient removal and recovery from municipal wastewater in the Canadian context. Canadian Water NetworkGoogle Scholar
  100. Ottosen LM, Kirkelund GM, Jensen PE (2013) Extracting phosphorous from incinerated sewage sludge ash rich in iron or aluminum. Chemosphere 91(7):963–969CrossRefGoogle Scholar
  101. Patrick WH, Gotoh S, Williams BG (1973) Strengite dissolution in flooded soils and sediments. Science 179(4073):564–565CrossRefGoogle Scholar
  102. Paul E, Laval ML, Sperandio M (2001) Excess sludge production and costs due to phosphorus removal. Environ Technol 22:1363–1371CrossRefGoogle Scholar
  103. Peretyazhko T, Sposito G (2005) Iron(III) reduction and phosphorous solubilization in humid tropical forest soils. Geochim Cosmochim Acta 69(14):3643–3652CrossRefGoogle Scholar
  104. Petzet S, Peplinski B, Cornel P (2012) On wet chemical phosphorus recovery from sewage sludge ash by acidic or alkaline leaching and an optimized combination of both. Water Res 46(12):3769–3780CrossRefGoogle Scholar
  105. Pham AN, Rose AL, Feltz AJ, Waite TD (2004) The effect of dissolved natural organic matter on the rate of removal of ferrous iron in fresh waters. In: Natural organic material research: innovations and applications for drinking water. IWA Publishing, pp 213–219Google Scholar
  106. Poffet MS (2007) Thermal runaway of the dried sewage sludge in the storage tanks: from molecular origins to technical measures of smouldering fire prevention. Dissertation thesisGoogle Scholar
  107. Prochnow LI, Chien SH, Carmona G, Dillard EF, Henao J, Austin ER (2008) Plant availability of phosphorus in four superphosphate fertilizers varying in water-insoluble phosphate compounds. Soil Sci Soc Am J 72(2):462CrossRefGoogle Scholar
  108. Rapf M, Raupenstrauch H, Cimatoribus C, Kranert M (2012) A new thermo-chemical approach for the recovery of phosphorus from sewage sludgeGoogle Scholar
  109. Rasmussen H, Nielsen P (1996) Iron reduction in activated sludge measured with different extraction techniques. Water Res 30(3):551–558CrossRefGoogle Scholar
  110. Reusser SR (2009) Proceed with caution in advanced anaerobic digestion system design. Proceedings of the Water Environment Federation Session 41 through Session 50 (3065–3084)CrossRefGoogle Scholar
  111. Richardson CJ (1985) Mechanisms controlling phosphorus retention capacity in freshwater wetlands. Science 228(4706):1424–1427CrossRefGoogle Scholar
  112. Roden EE, Edmonds JW (1997) Phosphate mobilization in iron-rich anaerobic sediments: microbial Fe(III) oxide reduction versus iron-sulfide formation. Arch Hydrobiol 139(3):347–378Google Scholar
  113. Rodgers KA, Henderson GS (1986) The thermochemistry of some iron phosphate minerals: vivianite, metavivianite, baraćite, ludlamite and vivianite/metavivianite admixtures. Thermochim Acta 104:1–12CrossRefGoogle Scholar
  114. Roldan R, Barron V, Torrent J (2002) Experimental alteration of vivianite to lepidocrocite in a calcareous medium. Clay Miner 37(4):709–718CrossRefGoogle Scholar
  115. Römer W (2006) Vergleichende Untersuchungen zur Pflanzenverfügbarkeit von Phosphat aus verschiedenen P-Recycling-Produkten im Keimpflanzenversuch. J Plant Nutr Soil Sci 169(6):826–832CrossRefGoogle Scholar
  116. Rothe M, Kleeberg A, Hupfer M (2016) The occurrence, identification and environmental relevance of vivianite in waterlogged soils and aquatic sediments. Earth Sci Rev 158:51–64CrossRefGoogle Scholar
  117. Samie IF, Römer W (2001) Phosphorus availability to maize plants from sewage sludge treated with Fe compounds. In: Horst WJ, Schenk MK, Bürkert A, Claassen N, Flessa H, Frommer WB, Goldbach H, Olfs H-W, Römheld V, Sattelmacher B, Schmidhalter U, Schubert S, Wirén N v, Wittenmayer L (eds) Plant nutrition. Springer Netherlands, Dordrecht, pp 846–847CrossRefGoogle Scholar
  118. Sano A, Kanomata M, Inoue H, Sugiura N, Xu K-Q, Inamori Y (2012) Extraction of raw sewage sludge containing iron phosphate for phosphorus recovery. Chemosphere 89(10):1243–1247CrossRefGoogle Scholar
  119. SCB (2016) Utsläpp till vatten och slamproduktion 2014 Kommunala reningsverk, massa- och pappersindustri samt viss övrig industri. Statistiska centralbyranGoogle Scholar
  120. Schipper WJ, Korving L (2009) Full-scale plant test using sewage sludge ash as raw material for phosphorus production. In: Proceedings of International Conference on Nutrient Recovery, May 2009Google Scholar
  121. Schröder JJ, Cordell D, Smit AL, Rosemarin A (2010) Sustainable use of phosphorus. Wageningen University and Research Centre, 140 ppGoogle Scholar
  122. Schröder JJ, Smit AL, Cordell D, Rosemarin A (2011) Improved phosphorus use efficiency in agriculture: a key requirement for its sustainable use. Chemosphere 84(6):822–831CrossRefGoogle Scholar
  123. Schwertmann U, Cornell RM (2000) Iron oxides in the laboratory: preparation and characterization, 2nd completely rev. and extended edn. Wiley-VCH, WeinheimCrossRefGoogle Scholar
  124. Shimp GF, Barnard JL, Bott CB (2013) Seeking to understand and address the impacts of biological phosphorus removal on biosolids dewatering. Proc Water Environ Fed 2013(9):5668–5685CrossRefGoogle Scholar
  125. Singer PC (1972) Anaerobic control of phosphate by ferrous iron: anaerobic control of phosphate by ferrous iron. J Water Pollut Control Fed 44(4):663Google Scholar
  126. Smith S, Takacs I, Murthy S, Daigger GT, Szabo A (2008) Phosphate complexation model and its implications for chemical phosphorus removal. Water Environ Res 80(5):428–438Google Scholar
  127. Smolders AJP, Lamers LPM, Lucassen ECHET, Van Der Velde G, Roelofs JGM (2006) Internal eutrophication: how it works and what to do about it – a review. Chem Ecol 22(2):93–111CrossRefGoogle Scholar
  128. Stumm W, Morgan JJ (1996) Aquatic chemistry: chemical equilibria and rates in natural waters, Environmental science and technology, 3rd edn. Wiley, New YorkGoogle Scholar
  129. Stumm W, Sigg L, Sulzberger B (1992) Chemistry of the solid-water interface: processes at the mineral-water and particle-water in natural systems, A Wiley-Interscience publication. Wiley, New YorkGoogle Scholar
  130. Suschka J, Machnicka A, Poplawski S (2001) Phosphate recovery from iron phosphate sludge. Environ Technol 22:1295–1301CrossRefGoogle Scholar
  131. Takács I, Murthy S, Smith S, McGrath M (2006) Chemical phosphorus removal to extremely low levels: experience of two plants in the Washington, DC area. Water Sci Technol 53(12):21CrossRefGoogle Scholar
  132. Taylor KG, Hudson-Edwards KA, Bennett AJ, Vishnyakov V (2008) Early diagenetic vivianite [Fe3(PO4)2·8H2O] in a contaminated freshwater sediment and insights into zinc uptake: a μ-EXAFS, μ-XANES and Raman study. Appl Geochem 23(6):1623–1633CrossRefGoogle Scholar
  133. Tchobanoglous G, Burton FL, Stensel HD (2013) Wastewater engineering: treatment and reuse, 5th edn. McGraw-Hill Higher Education; McGraw-Hill [distributor], New YorkGoogle Scholar
  134. Theis TL, Singer PC (1974) Complexation of iron(II) by organic matter and its effect on iron(II) oxygenation. Environ Sci Technol 8(6):569–573CrossRefGoogle Scholar
  135. Thistleton J, Clark T, Pearce P, Parsons SA (2001) Mechanisms of chemical phosphorus removal. Process Saf Environ Prot 79(6):339–344CrossRefGoogle Scholar
  136. Tilley (2005) Supplementary material to part 3: reactions and transformations. In: Understanding solids. Wiley, pp 531–542Google Scholar
  137. USEPA (2009) Targeted national sewage sludge survey sampling and analysis technical report (January)Google Scholar
  138. van den Brand TPH, Roest K, Chen GH, Brdjanovic D, van Loosdrecht MCM (2015) Occurrence and activity of sulphate reducing bacteria in aerobic activated sludge systems. World J Microbiol Biotechnol 31(3):507–516CrossRefGoogle Scholar
  139. van der Grift B, Behrends T, Osté LA, Schot PP, Wassen MJ, Griffioen J (2016) Fe hydroxyphosphate precipitation and Fe(II) oxidation kinetics upon aeration of Fe(II) and phosphate-containing synthetic and natural solutions. Geochim Cosmochim Acta 186:71–90CrossRefGoogle Scholar
  140. Waerenborgh JC, Figueiredo MO (1986) X-ray powder diffraction and 57 Fe Mössbauer spectroscopy study of the thermal breakdown of vivianite, Fe3(PO4)2x8H2O. Hyperfine Interact 29(1):1101–1104CrossRefGoogle Scholar
  141. WEF (2011) Nutrient removal, WEF manual of practice no. 34. McGraw-Hill; WEF Press, New YorkGoogle Scholar
  142. Weigand H, Bertau M, Bohndick F, Bruckert A (2011) RECOPHOS: recophos: full scale recovery of phosphate from sewage sludge ash. Sardinia 2011, Thirteenth International Waste Management and Landfill SymposiumGoogle Scholar
  143. Wendt Von H (1973) Die Kinetik typischer Hydrolysereaktionen von mehrwertigen Kationen. Chimia 27:575–588Google Scholar
  144. Wilfert P, Suresh Kumar P, Korving L, Witkamp GJ, van Loosdrecht MCM (2015) The relevance of phosphorus and iron chemistry to the recovery of phosphorus from wastewater: a review. Environ Sci Technol 104:449Google Scholar
  145. Wilfert P, Mandalidis A, Dugulan I, Goubitz K, Korving L, Temmink H, Witkamp GJ, van Loosdrecht M (2016) Vivianite as an important iron phosphate precipitate in sewage treatment plants. Water Res 104:449CrossRefGoogle Scholar
  146. Xu Y, Hu H, Liu J, Luo J, Qian G, Wang A (2015) pH dependent phosphorus release from waste activated sludge: contributions of phosphorus speciation. Chem Eng J 267:260–265CrossRefGoogle Scholar
  147. Yoon SY, Lee CG, Park JA, Kim JH, Kim SB, Lee SH, Choi JW (2014) Kinetic, equilibrium and thermodynamic studies for phosphate adsorption to magnetic iron oxide nanoparticles. Chem Eng J 236:341–347CrossRefGoogle Scholar
  148. Zhang X (2012) Factors influencing iron reduction–induced phosphorus precipitation. Environ Eng Sci 29(6):511–519CrossRefGoogle Scholar

Copyright information

© Springer Nature Singapore Pte Ltd. 2019

Authors and Affiliations

  • Leon Korving
    • 1
    Email author
  • Mark Van Loosdrecht
    • 2
  • Philipp Wilfert
    • 1
    • 2
  1. 1.Wetsus, European Centre of Excellence for Sustainable Water TechnologyLeeuwardenThe Netherlands
  2. 2.Department of BiotechnologyDelft University of TechnologyDelftThe Netherlands

Personalised recommendations