Advertisement

The Stuttgart Process (Germany)

  • Carsten Meyer
  • Volker Preyl
  • Heidrun SteinmetzEmail author
  • Werner Maier
  • Ralph-Edgar Mohn
  • Harald Schönberger
Chapter

Abstract

The Stuttgart Process for nutrient recovery aims to produce struvite as fertilizer from digested sewage sludge from wastewater treatment plants (WWTP) with chemical phosphorus removal. This chapter deals with the detailed description of the experiences with a pilot-scale test plant and its process operation, the latest process optimizations, as well as operational performance data, i.e., phosphorus recovery rates, recyclate product quality, required operational supplements, and costs. The results show that depending on the chemicals used for phosphorus elimination and on the process boundary conditions (especially pH value for dissolving phosphorus from the sewage sludge), different amounts of phosphorus can be recovered. With acidic leaching at pH of approximately 3, it is possible to gain recovery rates of more than 65% as struvite with high purity and very low contents of heavy metals and recalcitrant organic compounds. Additional operating costs for the Stuttgarter process would increase wastewater feed of about 0.15 €/m3.

Keywords

Phosphorus recovery Nutrient recovery Digested sludge Struvite Magnesium ammonium phosphate (MAP) Recyclate quality Costs 

References

  1. Cohen Y (2009) Phosphorus dissolution from ash of incinerated sewage sludge and animal carcasses using sulphuric acid. Environ Technol 30(11):1215–1226CrossRefGoogle Scholar
  2. Meyer C, Preyl V, Steinmetz H (2015) High quality MAP production from digested sewage sludge. Oral presentation and proceedings of the IWA specialist conference on nutrient removal and recovery: moving innovation into practice, Gdańsk, Poland, 18.-21.05.2015Google Scholar
  3. Meyer C, Preyl V, Steinmetz H, Maier W, Mohn R-E, Schönberger H, Piersson T (2018) The Stuttgart Process. In: Schaum Chr (ed) Phosphorus: polluter and resource of the future: removal and recovery from wastewater. IWA Publishing. ISBN13: 9781780408354, eISBN: 9781780408361, in process (estimated publication date: 15/02/2018)Google Scholar
  4. P-REX (www.p-rex.eu) (2015) Stuttgart process sludge leaching: technical fact sheet (pdf) n.p.; http://p-rex.eu/uploads/media/PREX_Factsheet_STUTTGART.pdf; 15 Feb. 2015. Web. 07 Feb. 2017
  5. Stark K, Plaza E, Hultman B (2006) Phosphorus release from ash, dried sludge and sludge residue from supercritical water oxidation by acid or base. Chemosphere 62(5):827–832CrossRefGoogle Scholar
  6. Uysal A, Yilmazel YD, Demirer GN (2010) The determination of fertilizer quality of the formed struvite from effluent of a sewage sludge anaerobic digester. J Hazard Mater 181:248–254CrossRefGoogle Scholar
  7. Weidelener A (2009) Phosphorrückgewinnung aus kommunalem Klärschlamm als Magnesium-Ammonium-Phosphat (MAP). Fakultät Bau- und Umweltingenieurwissenschaft der Universität Stuttgart. Bericht: Prof. Dr.-Ing. Heidrun Steinmetz, Prof. Dr.-Ing. Jörg Londong, Stuttgarter Berichte zur Siedlungswasserwirtschaft. Band 202Google Scholar

Copyright information

© Springer Nature Singapore Pte Ltd. 2019

Authors and Affiliations

  • Carsten Meyer
    • 1
  • Volker Preyl
    • 1
  • Heidrun Steinmetz
    • 2
    Email author
  • Werner Maier
    • 3
  • Ralph-Edgar Mohn
    • 4
  • Harald Schönberger
    • 1
  1. 1.Institute for Sanitary Engineering, Water Quality and Solid Waste Management (ISWA)University of StuttgartStuttgartGermany
  2. 2.Institute for Resource Efficient Wastewater TechnologyUniversity of KaiserslauternKaiserslauternGermany
  3. 3.iat – Ingenieurberatung GmbHStuttgartGermany
  4. 4.Abwasserzweckverband Raum OffenburgOffenburgGermany

Personalised recommendations