Advertisement

Outotec (AshDec®) Process for P Fertilizers from Sludge Ash

  • Ludwig HermannEmail author
  • Tanja Schaaf
Chapter

Abstract

Outotec offers the AshDec® process by which inorganic calcined phosphates (thermophosphates) are produced from phosphate-rich ashes remaining from incineration or gasification of sewage sludge, animal by-products, poultry litter, and other nutrient-rich organic waste. In the thermochemical process, solid, potassium and/or sodium-based, alkaline compounds admixed to the ash decompose at a temperature of >900 °C and react with the ash-borne phosphates to form bioavailable (ammonium citrate-soluble) alkaline phosphate compounds. Simultaneously, the toxic arsenic, cadmium, and lead compounds become gaseous and evaporate from the reactor bed. As soon as the process gas is being cooled, the particles condensate and are captured and removed in an electrostatic precipitator as metal concentrate. The process produces a P or PK fertilizer with relevant mass fractions of silicates, sodium, and trace elements. Phosphates are released and taken up by crops when root exudates decompose the Ca-K/Na-PO4 compounds preventing losses of P in solution if water-soluble P fertilizers are used. The recently explored, partial replacement of sodium sulfates by potassium phosphates avoids high sodium concentrations and leads to a PK 16-7 + 4S fertilizer with >25% total macro nutrient content and >10% sodium/potassium silicates that may enhance crop resilience. In a recent (published 2016) report, the Expert Group for Technical Advice on Organic Production (EGTOP) came to the conclusion to recommend calcined phosphates and struvite for organic production.

Keywords

P recovery and recycling Calcined phosphates Heavy metal removal Citrate-soluble phosphates Organic farming Root controlled release fertilizer 

References

  1. Adam C. www.bam.de. 15 02 2017. [Online]. Available: urn:nbn:de:kobv:b43-391607. Accessed 12 07 2017
  2. Adam C, Peplinski B, Michaelis M, Kley G, Simon F-G (2008) Thermochemical treatment of sewage sludge ashes for phosphorus recovery. Waste Manag 1122–1128CrossRefGoogle Scholar
  3. Adam C, Hermann L, Stemann J (2015) Production of citrate soluble phosphates by calcination of secondary phosphate sources with a sodium-sulfuric compound. Germany, Europe Patent EP2015/063062Google Scholar
  4. Bundesministerium für Umwelt, Naturschutz und Reaktorsicherheit im Einvernehmen mit dem Bundesministerium für Verbraucherschutz, Ernährung und Landwirtschaft, Verordnung über das Inverkehrbringen von Düngemitteln, Bodenhilfsstoffen, Kultursubstraten und Pflanzenhilfsmitteln (Düngemittelverordnung – DüMV). Bundesrecht, Bundesrepublik Deutschland, Bonn, 26.11.2003Google Scholar
  5. Expert Group for Technical Advice on Organic Production (EGTOP) (2016) Final report on organic fertilizers and soil conditioners (II). European Commission, Directorate-General For Agriculture And Rural Development, BrusselsGoogle Scholar
  6. Guntzer F, Keller C, Meunier J (2012) Benefits of plant silicon for crops: a review. Agron Sustain Dev., Springer Verlag, vol. INRA 2012 32(1):201–213CrossRefGoogle Scholar
  7. Herzel H, Krüger O, Hermann L, Adam C (2016) Sewage sludge ash – a promising secondary phosphorus source for fertilizer production. Sci Total Environ 542:1136–1143.  https://doi.org/10.1016/j.scitotenv.2015.08.059 CrossRefGoogle Scholar
  8. Joint EU Research Project P-REX 2012–2015, “P-REX,” 05 04 2016. [Online]. Available: www.p-rex.eu
  9. Kabbe C (2015) Sustainable sewage sludge management fostering phosphorus recovery and energy efficiency. Kompetenzzentrum Wasser Berlin gGmbH, BerlinGoogle Scholar
  10. Matichenkov V, Bocharnikova E (2012) Influence of plant associations on the silicon cycle in the soil-plant ecosystem. Appl Ecol Environ Res 10(4):547–560CrossRefGoogle Scholar
  11. McCune DL (1981) Fertilizers for tropical and subtropical agriculture. The Fertilizer Society of London, LondonGoogle Scholar
  12. Moreira A, Malavolta E, Cardoso Moraes LA (2002) Eficiencia de fontes e doses de fósforo na alfaalfa e controsema cultivadas em Latosolo Amarelo. Pesqui Agropecuaria Bras 37(10):1459–1466CrossRefGoogle Scholar
  13. Paungfoo-Lonhienne C, Schmidt S, Webb R, Lonhienne TG (2013) Rhizophagy-a new dimension of plant-microbe interactions. In: de Bruijn FJ (ed) Molecular microbial ecology of the rhizosphere, Vols. Hoboken, New Jersey, pp 1199–1207.  https://doi.org/10.1002/9781118297674.ch115 CrossRefGoogle Scholar
  14. Penha A, Keith S (2012) Rio Verde minerals announces positive agronomic tests on thermophosphate produced from its Sapucaia target, Fosfatar phosphate project. Rio Verde Minerals, TorontoGoogle Scholar
  15. Sandim A, Vian JD, Silva AB, Camili EC, Silva PRA, Wolf MJ (2008) ASSESSMENT OF PRODUCTIVITY cultivar RB 83-5486 CANA-DE-AÇÚCAR (Saccharum officiarum) IN DIFFERENT SOURCES FOSFATADAS ADUBAÇÃO BASE IN THE CAMPO GRANDE – MS., FertBio 2008, Campo GrandeGoogle Scholar
  16. Schmidt S, Laycock B, Luckman P, Redding M, Batstone D, Hugenholtz P (2016) NEXTGEN FERTILIZERS – nutrient stewardship for environmentally sustainable agriculture and food security. The University of Queensland, BrisbaneGoogle Scholar
  17. Schweizerische Eidgenossenschaft, Der Bundesrat, Verordnung zur Reduktion von Risiken beim Umgang mit bestimmten besonders gefährlichen Stoffen, Zubereitungen und Gegenständen. Der Schweizerische Bundesrat, Bern 18. Mai 2005 (Stand am 20. Juni 2017)Google Scholar
  18. Viana E, Vasconcelos ACF (2008) Producao de alface adubada com termophosphato e adubos organicos (Thermophosphate and organic fertilization in lettuce yield). Rev Cienc Agron Fortaleza 39(02):217–224Google Scholar
  19. Werner W (1981) Der Rhenania Dünger – Monographie über Herstellung, Eigenschaften und Wirkung der Rhenania-Dünger. Verlag M. & H. Schaper, HannoverGoogle Scholar

Copyright information

© Springer Nature Singapore Pte Ltd. 2019

Authors and Affiliations

  1. 1.Outotec GmbH & Co. KGOberurselGermany

Personalised recommendations