Advertisement

Generalized Master-Slave-Splitting Theory

  • Zhengshuo LiEmail author
Chapter
  • 321 Downloads
Part of the Springer Theses book series (Springer Theses)

Abstract

Although the G-TDCM is M-S separable, the variables of the boundary subsystem still make it difficult to decompose the G-TDCM into several parts that can be distributedly solved.

References

  1. 1.
    Fukushima M (2011) Fundament for nonlinear optimization (trans: Lin GH). Science Press, Beijing, China (in Chinese)Google Scholar
  2. 2.
    Schmidt HP, Guaraldo JC, Lopes MDM et al (2015) Interchangeable balanced and unbalanced network models for integrated analysis of transmission and distribution systems. IEEE Trans Power Syst 30(5):2747–2754CrossRefGoogle Scholar
  3. 3.
    Sun HB (1996) The studies on global reactive optimal control of power system. Ph.D. dissertation, Tsinghua University, Beijing, China (in Chinese)Google Scholar
  4. 4.
    Sun HB, Guo QL, Zhang BM et al (2015) Master-slave-splitting based distributed global power flow method for integrated transmission and distribution analysis. IEEE Trans Smart Grid 6(3):1484–1492CrossRefGoogle Scholar
  5. 5.
    Bertsekas DP (1999) Nonlinear programming, 2nd edn. Athena, BelmontzbMATHGoogle Scholar
  6. 6.
    Chen BL (2005) Optimization theory and algorithms, 2nd edn. Tsinghua University Press, Beijing, China (in Chinese)Google Scholar
  7. 7.
    Biskas PN, Bakirtzis AG (2006) Decentralised OPF of large multiarea power systems. IEE Proc Gener Transm Distrib 153(1):99–105Google Scholar
  8. 8.
    Bakirtzis AG, Biskas PN (2003) A decentralized solution to the DC-OPF of interconnected power systems. IEEE Trans Power Syst 18(3):1007–1013CrossRefGoogle Scholar
  9. 9.
    Biskas PN, Bakirtzis AG (2004) Decentralised security constrained DC-OPF of interconnected power systems. Proc Inst Elect Eng Gen Transm Distrib 151(6):747–754Google Scholar
  10. 10.
    Biskas PN, Bakirtzis AG, Macheras NI et al (2005) A decentralized implementation of DC optimal power flow on a network of computers. IEEE Trans Power Syst 20(1):25–33CrossRefGoogle Scholar
  11. 11.
    Liu KY, Sheng WX, Li YH (2006) Research on decomposition algorithm of dc optimal power flow in large scale interconnection power grids. Proc CSEE 26(12):21–25 (in Chinese)Google Scholar
  12. 12.
    Lai XW, Xie L, Xia Q et al (2015) Decentralized multi-area economic dispatch via dynamic multiplier-based lagrangian relaxation. IEEE Trans Power Syst 30(6):3225–3233CrossRefGoogle Scholar
  13. 13.
    Ahmadi-Khatir A, Conejo AJ, Cherkaoui R (2013) Multi-area energy and reserve dispatch under wind uncertainty and equipment failures. IEEE Trans Power Syst 28(4):4373–4383CrossRefGoogle Scholar

Copyright information

© Springer Nature Singapore Pte Ltd. 2018

Authors and Affiliations

  1. 1.Tsinghua-Berkeley Shenzhen InstituteTsinghua UniversityShenzhenChina

Personalised recommendations