Skip to main content

Biometric Methods for Animal: Recent Trends and Future Challenges

Abstract

This chapter provides an extensive view about the state-of-the-art animal biometric recognition systems for different applications and environments. The chapter also introduced animal biometrics databases of different species or individual animal in tabular format. In addition, visual animal biometrics followed by the issues and challenges is presented in brief. Finally, some opinions as to the future directions are presented in the summary of the chapter.

Keywords

  • Animal biometrics
  • Computer vision
  • Phenotypic appearance

This is a preview of subscription content, access via your institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • DOI: 10.1007/978-981-10-7956-6_8
  • Chapter length: 21 pages
  • Instant PDF download
  • Readable on all devices
  • Own it forever
  • Exclusive offer for individuals only
  • Tax calculation will be finalised during checkout
eBook
USD   84.99
Price excludes VAT (USA)
  • ISBN: 978-981-10-7956-6
  • Instant PDF download
  • Readable on all devices
  • Own it forever
  • Exclusive offer for individuals only
  • Tax calculation will be finalised during checkout
Softcover Book
USD   109.00
Price excludes VAT (USA)
Hardcover Book
USD   109.00
Price excludes VAT (USA)
Fig. 8.1
Fig. 8.2
Fig. 8.3
Fig. 8.4
Fig. 8.5

References

  1. Kühl, H. S., & Burghardt, T. (2013). Animal biometrics: Quantifying and detecting phenotypic appearance. Trends in Ecology and Evolution, 28(7), 432–441.

    CrossRef  Google Scholar 

  2. Burghardt, T. (2008). Visual animal biometrics: Automatic detection and individual identification by coat pattern. Doctoral dissertation. University of Bristol.

    Google Scholar 

  3. Crall, J. D., Gravish, N., Mountcastle, A. M., & Combes, S. A. (2015). BEEtag: A low-cost, image-based tracking system for the study of animal behavior and locomotion. PLoS One, 10(9), e0136487.

    CrossRef  Google Scholar 

  4. Villa, A. G., Salazar, A., & Vargas, F. (2017). Towards automatic wild animal monitoring: Identification of animal species in camera-trap images using very deep convolutional neural networks. Ecological Informatics, 41, 24–32.

    CrossRef  Google Scholar 

  5. Zhao, Z., Zhang, S. H., Xu, Z. Y., Bellisario, K., Dai, N. H., Omrani, H., et al. (2017). Automated bird acoustic event detection and robust species classification. Ecological Informatics, 39, 99–108.

    CrossRef  Google Scholar 

  6. Manohar, N., Subrahmanya, S., Bharathi, R. K., YH, S. K., & Kumar, H. (2016, August). Recognition and classification of animals based on texture features through parallel computing. In Cognitive Computing and Information Processing (CCIP), 2016 Second International Conference on (pp. 1–5). IEEE.

    Google Scholar 

  7. Prasad, G. R. (2017). A hybrid auto surveillance model using scale invariant feature transformation for tiger classification.

    Google Scholar 

  8. Giraldo-Zuluaga, J. H., Salazar, A., Gomez, A., & Diaz-Pulido, A. (2017). Automatic recognition of mammal genera on camera-trap images using multi-layer robust principal component analysis and mixture neural networks. arXiv preprint arXiv:1705.02727.

    Google Scholar 

  9. Kumar, S., & Singh, S. K. (2016). Monitoring of pet animal in smart cities using animal biometrics. Future Generation Computer Systems. https://doi.org/10.1016/j.future.2016.12.006.

  10. Cruickshank, S. S., & Schmidt, B. R. (2017). Error rates and variation between observers are reduced with the use of photographic matching software for capture-recapture studies. Amphibia-Reptilia, 38(3), 315–325.

    CrossRef  Google Scholar 

  11. Martineau, M., Conte, D., Raveaux, R., Arnault, I., Munier, D., & Venturini, G. (2017). A survey on image-based insect classification. Pattern Recognition, 65, 273–284.

    CrossRef  Google Scholar 

  12. Baba, M., Pescaru, D., Gui, V., & Jian, I. (2016, October). Stray dogs behavior detection in urban area video surveillance streams. In Electronics and Telecommunications (ISETC), 2016 12th IEEE International Symposium on (pp. 313–316). IEEE.

    Google Scholar 

  13. Burghardt, T., & Campbell, N. (2007, March). Individual animal identification using visual biometrics on deformable coat patterns. In 5th International Conference on Computer Vision Systems (ICVS).

    Google Scholar 

  14. Kumar, S., Singh, S. K., Dutta, T., & Gupta, H. P. (2016, June). Poster: A real-time cattle recognition system using wireless multimedia networks. In Proceedings of the 14th Annual International Conference on Mobile Systems, Applications, and Services Companion (pp. 48–48). ACM.

    Google Scholar 

  15. Kumar, S., Singh, S. K., Datta, T., & Gupta, H. P. (2016, October). A fast cattle recognition system using smart devices. In Proceedings of the 2016 ACM on Multimedia Conference (pp. 742–743). ACM.

    Google Scholar 

  16. Suzaki, M., Yamakita, O., Horikawa, S. I., Kuno, Y., Aida, H., Sasaki, N., & Kusunose, R. (2001). A horse identification system using biometrics. Systems and Computers in Japan, 32(14), 12–23. https://doi.org/10.1002/scj.108.

  17. Jarraya, I., Ouarda, W., & Alimi, A. M. (2015, October). A preliminary investigation on horse’s recognition using facial texture features. In Proceedings of 2015 IEEE International Conference on Systems, Man, and Cybernetics (SMC), pp. 2803–2808.

    Google Scholar 

  18. http://msutoday.msu.edu/news/2017/can-facial-recognition-systems-help-save-lemurs/. Accessed on October 26, 2017 at 10.30 pm.

  19. Loos, A., & Ernst, A. (2013). An automated chimpanzee identification system using face detection and recognition. EURASIP Journal on Image and Video Processing, 2013(1), 49. https://doi.org/10.1186/1687-5281-2013-49.

  20. Freytag, A., Rodner, E., Simon, M., Loos, A., Kühl, H. S., & Denzler, J. (2016, September). Chimpanzee faces in the wild: Log-Euclidean CNNs for predicting identities and attributes of primates. In German Conference on Pattern Recognition (pp. 51–63). Springer International Publishing.

    Google Scholar 

  21. Crunchant, A. S., Egerer, M., Loos, A., Burghardt, T., Zuberbühler, K., Corogenes, K., et al. (2017). Automated face detection for occurrence and occupancy estimation in chimpanzees. American Journal of Primatology, 79(3), 1–12.

    CrossRef  Google Scholar 

  22. Corkery, G. P., Gonzales-Barron, U. A., Butler, F., Mc Donnell, K., & Ward, S. (2007). A preliminary investigation on face recognition as a biometric identifier of sheep. Transactions of the ASABE, 50(1), 313–320.

    CrossRef  Google Scholar 

  23. Cai, C., & Li, J. (2013, October). Cattle face recognition using local binary pattern descriptor. In Proceedings of IEEE International Conference on Signal and Information Asia-Pacific Processing Association Annual Summit and Conference (APSIPA), pp. 1–4.

    Google Scholar 

  24. Kumar, S., & Singh, S. K. (2014). Biometric recognition for pet animal. Journal of Software Engineering and Applications, 7(05), 470–482.

    CrossRef  Google Scholar 

  25. Hyeon, T. K., Ikeda, Y., & Hong, L. C. (2005). The Identification of Japanese Black Cattle by Their Faces. Asian-Australasian Journal of Animal Sciences, 18(6), 868–872.

    CrossRef  Google Scholar 

  26. Kumar, S., Tiwari, S., & Singh, S. K. (2015, December). Face recognition for cattle. In Proceedings of 2015 Third International Conference on Image Information Processing (ICIIP), pp. 65–72.

    Google Scholar 

  27. Jarraya, I., Ouarda, W., & Alimi, A. M. (2017, March). Deep neural network features for horses identity recognition using multiview horses’ face pattern. In Proceeding of Ninth International Conference on Machine Vision, pp. 103410B–103410B. International Society for Optics and Photonics.

    Google Scholar 

  28. Ouarda, W., Trichili, H., Alimi, A. M., & Solaiman, B. (2016). Towards a novel biometric system for smart riding club. Journal of Information Assurance & Security, 11(4).

    Google Scholar 

  29. Crouse, D., Jacobs, R. L., Richardson, Z., Klum, S., Jain, A., Baden, A. L., et al. (2017). LemurFaceID: A face recognition system to facilitate individual identification of lemurs. BMC Zoology, 2(1), 1–14.

    CrossRef  Google Scholar 

  30. Otero, B., Rodriguez, E., & Ventura, J. (2017). SURF-based mammalian species identification system. Multimedia Tools and Applications, 76(7), 10133–10147.

    CrossRef  Google Scholar 

  31. Beyan, C., Katsageorgiou, V. M., & Fisher, R. B. Extracting statistically significant behaviour from fish tracking data with and without large dataset cleaning. IET Computer Vision

    Google Scholar 

  32. Kumar, S., & Singh, S. K. (2016). Visual animal biometrics: survey. IET Biometrics, 6(3), 139–156.

    Google Scholar 

  33. Austen, G. E., Bindemann, M., Griffiths, R. A., & Roberts, D. L. (2016). Species identification by experts and non-experts: comparing images from field guides. Scientific Reports, 6, 33634.

    Google Scholar 

  34. Jarraya, I., Ouarda, W., & Alimi, A. M. (2015, October). A preliminary investigation on horses recognition using facial texture features. In Systems, Man, and Cybernetics (SMC), 2015 IEEE International Conference on (pp. 2803–2808). IEEE.

    Google Scholar 

  35. Schaller, G. B. (2009). The Serengeti Lion: A Study of Predator-Prey Relations. University of Chicago Press.

    Google Scholar 

  36. Patel, A., Stocks, B., Fisher, C., Nicolls, F., & Boje, E. Tracking the cheetah tail using animal-borne cameras, GPS, and an IMU. IEEE Sensors Letters 1, (4), 1–4.

    Google Scholar 

  37. Patel, A., & Boje, E. On the conical motion of a two-degree-of-freedom tail inspired by the cheetah. IEEE Transactions on Robotics, 31(6), 1555–1560.

    Google Scholar 

  38. Amelon, S. K., Hooper, S. E., & Womack, K. M. (2017). Bat wing biometrics: Using collagen–elastin bundles in bat wings as a unique individual identifier. Journal of Mammalogy, 98(3), 744–751.

    CrossRef  Google Scholar 

  39. Chen, Y. C., Hidayati, S. C., Cheng, W. H., Hu, M. C., & Hua, K. L. (2016, January). Locality constrained sparse representation for cat recognition. In International Conference on Multimedia Modeling (pp. 140–151). Springer, Cham.

    Google Scholar 

  40. Dias, R. O. Q., & Borges, D. L. (2016, December). Recognizing plant species in the wild: Deep learning results and a new database. In Multimedia (ISM), 2016 IEEE International Symposium on (pp. 197–202). IEEE.

    Google Scholar 

  41. Kumar, S., Tiwari, S., & Singh, S. K. (2015, December). Face recognition for cattle. In Image Information Processing (ICIIP), 2015 Third International Conference on (pp. 65–72). IEEE.

    Google Scholar 

  42. Kumar, S., Tiwari, S., & Singh, S. K. (2016). Face recognition of cattle: Can it be done? Proceedings of the National Academy of Sciences, India, Section A: Physical Sciences, 86(2), 137–148.

    CrossRef  Google Scholar 

  43. Cai, C., & Li, J. (2013, October). Cattle face recognition using local binary pattern descriptor. In Signal and Information Processing Association Annual Summit and Conference (APSIPA), 2013 Asia-Pacific (pp. 1–4). IEEE.

    Google Scholar 

  44. Kumar, S., Singh, S. K., Singh, R. S., Singh, A. K., & Tiwari, S. (2017). Real-time recognition of cattle using animal biometrics. Journal of Real-Time Image Processing, 13(3), 505–526.

    CrossRef  Google Scholar 

  45. Le Chevalier, H., Calvez, O., Martinez-Silvestre, A., Picard, D., Guérin, S., Isselin-Nondedeu, F., et al. (2017). Marking techniques in the Marbled Newt (Triturus marmoratus): PIT-Tag and tracking device implant protocols. Acta Herpetologica, 12(1), 79–88.

    Google Scholar 

  46. Petrovska-Delacretaz, D., Edwards, A., Chiassoli, J., Chollet, G., & Pilliod, D. S. (2014, March). A reference system for animal biometrics: Application to the northern leopard frog. In Advanced Technologies for Signal and Image Processing (ATSIP), 2014 1st International Conference on (pp. 295–300). IEEE.

    Google Scholar 

  47. Petrovska-Delacrétaz, D., Edwards, A., Chiasson, J., & Chollet, G. (2014, March). Semi-automated identification of leopard frogs. In ICPRAM 2014: 3rd International Conference on Pattern Recognition Applications and Methods (pp. 679–686). SCITEPRESS.

    Google Scholar 

  48. Lloyd, J. R., Maldonado, M. Á., & Stafford, R. (2012). Methods of developing user-friendly keys to identify green sea turtles (Chelonia mydas L.) from photographs. International Journal of Zoology.

    Google Scholar 

  49. Bardier, C., Pereira, G., Elgue, E., Maneyro, R., & Toledo, L. F. (2017). Quantitative determination of the minimum body size for photo-identification of melanophryniscus montevidensis (Bufonidae). Herpetological Conservation and Biology, 12, 119–126.

    Google Scholar 

  50. Rey, N., Volpi, M., Joost, S., & Tuia, D. (2017). Detecting animals in African Savanna with UAVs and the crowds. Remote Sensing of Environment, 200, 341–351.

    CrossRef  Google Scholar 

  51. Valletta, J. J., Torney, C., Kings, M., Thornton, A., & Madden, J. (2017). Applications of machine learning in animal behaviour studies. Animal Behaviour, 124, 203–220.

    CrossRef  Google Scholar 

  52. Jones, K. E., Bielby, J., Cardillo, M., Fritz, S. A., O'Dell, J., Orme, C. D. L., Safi, K., Sechrest, W., Boakes, E. H., Carbone, C., Connolly, C., Cutts, M. J., Foster, J. K., Grenyer, R., Habib, M., Plaster, C. A., Price, S. A., Rigby, E. A., Rist, J., Teacher, A., Bininda-Emonds, O. R. P., Gittleman, J. L., Mace, G. M., Purvis, A., & Michener, W. K. (2009). PanTHERIA: a species-level database of life history, ecology, and geography of extant and recently extinct mammals. Ecology, 90(9), 2648–2648.

    Google Scholar 

  53. Burghardt, T., & Ćalić, J. (2006). Analysing animal behaviour in wildlife videos using face detection and tracking. In IEE Proceedings - Vision, Image, and Signal Processing, 153(3), 305.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Santosh Kumar .

Rights and permissions

Reprints and Permissions

Copyright information

© 2017 Springer Nature Singapore Pte Ltd.

About this chapter

Verify currency and authenticity via CrossMark

Cite this chapter

Kumar, S., Singh, S.K., Singh, R., Singh, A.K. (2017). Biometric Methods for Animal: Recent Trends and Future Challenges. In: Animal Biometrics. Springer, Singapore. https://doi.org/10.1007/978-981-10-7956-6_8

Download citation

  • DOI: https://doi.org/10.1007/978-981-10-7956-6_8

  • Published:

  • Publisher Name: Springer, Singapore

  • Print ISBN: 978-981-10-7955-9

  • Online ISBN: 978-981-10-7956-6

  • eBook Packages: Computer ScienceComputer Science (R0)