Skip to main content

Animal Biometrics: Concepts and Recent Application

Abstract

This chapter presents a brief introduction of the animal biometrics followed by the major characteristics, advantages, potential applications, and interdisciplinary relevance of animal biometrics recognition system in the field of ecology. Further, the chapter includes the general framework of animal biometrics recognition systems along with major components for detection and identification of species or individual animal along with some state-of-the-art animal biometrics recognition systems. Furthermore, the chapter introduces the population distribution of different species, technological challenges and recommendations for animal biometrics. Finally the community, communication, data and tool sharing are also included to provide the better collaboration to encourage the multidisciplinary researches in the field of animal biometrics.

Keywords

  • Animal biometrics
  • Computer vision
  • Pattern recognition
  • Phenotypic appearances
  • Morphological characteristics

This is a preview of subscription content, access via your institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • DOI: 10.1007/978-981-10-7956-6_1
  • Chapter length: 20 pages
  • Instant PDF download
  • Readable on all devices
  • Own it forever
  • Exclusive offer for individuals only
  • Tax calculation will be finalised during checkout
eBook
USD   84.99
Price excludes VAT (USA)
  • ISBN: 978-981-10-7956-6
  • Instant PDF download
  • Readable on all devices
  • Own it forever
  • Exclusive offer for individuals only
  • Tax calculation will be finalised during checkout
Softcover Book
USD   109.00
Price excludes VAT (USA)
Hardcover Book
USD   109.00
Price excludes VAT (USA)
Fig. 1.1
Fig. 1.2
Fig. 1.3
Fig. 1.4
Fig. 1.5
Fig. 1.6
Fig. 1.7
Fig. 1.8
Fig. 1.9

References

  1. Kühl, H. S., & Burghardt, T. (2013). Animal biometrics: Quantifying and detecting phenotypic appearance. Trends in Ecology & Evolution, 28(7), 432–441.

    CrossRef  Google Scholar 

  2. Burghardt, T. (2008). Visual animal biometrics. Automatic Detection and Individual Identification by Coat Pattern. https://doi.org/10.1016/j.future.2016.12.006.

  3. Kumar, S., Singh, S. K., Singh, R. S., Singh, A. K., & Tiwari, S. (2016). Real-time recognition of cattle using animal biometrics. Journal of Real-Time Image Processing, 13(3), 505–526.

    CrossRef  Google Scholar 

  4. Jovani, R., Pérez-Rodríguez, L., & Mougeot, F. (2013). Fractal geometry for animal biometrics: A response to Kühl and Burghardt. Trends in Ecology & Evolution, 28(9), 499–500.

    CrossRef  Google Scholar 

  5. Petrovska-Delacretaz, D., Edwards, A., Chiassoli, J., Chollet, G., & Pilliod, D. S. (2014, March). A reference system for animal biometrics: Application to the northern leopard frog. In Proceedings of IEEE International Conference on Advanced Technologies for Signal and Image Processing (ATSIP) (pp. 295–300).

    Google Scholar 

  6. Chen, J., Wen, Q., Qu, W., & Mete, M. (2012). Panda facial region detection based on topology modelling. In Proceedings of 5th IEEE International Congress on Image and Signal Processing (CISP) (pp. 911–915).

    Google Scholar 

  7. Taha, A., Darwish, A., & Hassanien, A. E. (2017, September). Arabian horse identification system based on live captured muzzle print images. In Proceedings of International Conference on Advanced Intelligent Systems and Informatics (pp. 778–787).

    Google Scholar 

  8. Buckland, S. T., Goudie, I. B. J., & Borchers, D. L. (2000). Wildlife population assessment: Past developments and future directions. Biometrics, 56(1), 1–12.

    CrossRef  MATH  Google Scholar 

  9. Finn, C., Duyck, J., Hutcheon, A., Vera, P., Salas, J., & Ravela, S. (2014, June). Relevance feedback in biometric retrieval of animal photographs. In Proceeding of Mexican Conference on Pattern Recognition (pp. 281–290).

    Google Scholar 

  10. Nguwi, Y. Y., Kouzani, A. Z., Kumar, J. J., & Driscoll, D. (2016). Automatic detection of lizards. In Proceedings of International Conference on Advanced Mechatronic Systems (ICAMechS) (pp. 300–305).

    Google Scholar 

  11. Kosyanenko, E. (2017). Convolutional neural networks for Saimaa ringed seal segmentation.

    Google Scholar 

  12. Kumar, S., & Singh, S. K. (2016). Visual animal biometrics: Survey. IET Biometrics, 6(3), 139–156.

    CrossRef  Google Scholar 

  13. Chen, Y. C., Hidayati, S. C., Cheng, W. H., Hu, M. C., & Hua, K. L. (2016, January). Locality constrained sparse representation for cat recognition. In Proceeding of International Conference on Multimedia Modeling (pp. 140–151).

    Google Scholar 

  14. Duyck, J., Finn, C., Hutcheon, A., Vera, P., Salas, J., & Ravela, S. (2015). Sloop: A pattern retrieval engine for individual animal identification. Pattern Recognition, 48(4), 1059–1073.

    CrossRef  Google Scholar 

  15. Hughes, B., & Burghardt, T. (2017). Automated visual fin identification of individual Great White Sharks. International Journal of Computer Vision, 122(3), 542–557.

    CrossRef  Google Scholar 

  16. Lettink, M., & Hare, K. M. (2016). Sampling techniques for New Zealand Lizards. In Proceedings of International Conference on New Zealand Lizards (pp. 269–291).

    Google Scholar 

  17. Arzoumanian, Z., Holmberg, J., & Norman, B. (2005). An astronomical pattern-matching algorithm for computer-aided identification of whale sharks Rhincodon typus. Journal of Applied Ecology, 42(6), 999–1011.

    CrossRef  Google Scholar 

  18. Cohen, C. J., Haanpaa, D., & Zott, J. P. (2015). Machine vision algorithms for robust animal species identification. In Proceedings of IEEE International Conference on Applied Imagery Pattern Recognition Workshop (AIPR) (pp. 1–7).

    Google Scholar 

  19. Mat, M. S. C., Diah, J. M., Din, M. A. M., & Samad, A. M. (2014, August). Data acquisition and representation of leaves using digital close range photogrammetry for species identification. In Proceedings of 5th IEEE International Conference on Control and System Graduate Research Colloquium (ICSGRC) (pp. 108–113).

    Google Scholar 

  20. Giraldo-Zuluaga, J. H., Salazar, A., & Daza, J. M. (2016). Semi-supervised recognition of the Diploglossus millepunctatus lizard species using artificial vision algorithms. Source: arXiv preprint arXiv:1611.02803.

  21. Andrew, W., Hannuna, S., Campbell, N., & Burghardt, T. (2016, September). Automatic individual holstein friesian cattle identification via selective local coat pattern matching in RGB-D imagery. In Proceedings of IEEE International Conference on Image Processing (ICIP) (pp. 484–488).

    Google Scholar 

  22. Awad, A. I. (2016). From classical methods to animal biometrics: A review on cattle identification and tracking. Computers and Electronics in Agriculture, 123, 423–435.

    CrossRef  Google Scholar 

  23. Burghardt, T., & Campbell, N. (2007). Individual animal identification using visual biometrics on deformable coat patterns. In Proceedings of 5th International Conference on Computer Vision Systems (ICVS).

    Google Scholar 

  24. Burghardt, T. (2008). Visual animal biometrics: Automatic detection and individual identification by coat pattern (Doctoral dissertation, University of Bristol).

    Google Scholar 

  25. Loos, A., & Ernst, A. (2013). An automated chimpanzee identification system using face detection and recognition. EURASIP Journal on Image and Video Processing, 2013(1), 49.

    CrossRef  Google Scholar 

  26. Ernst, A., & Kublbeck, C. (2011). Fast face detection and species classification of African great chimpanzee. In Proceedings of 8th IEEE International Conference on Advanced Video and Signal-Based Surveillance (AVSS) (pp. 279–284).

    Google Scholar 

  27. Hughes, B., & Burghardt, T. (2016). Automated visual fin identification of individual Great White Sharks. Journal: International Journal of Computer Vision. https://doi.org/10.1007/s11263-016-0961-y.

  28. Meek, P. D., Ballard, G.-A., & Fleming, P. J. S. (2015). The pitfalls of wildlife camera trapping as a survey tool in Australia. Journal of Australian Mammalogy, 37(1), 13. https://doi.org/10.1071/AM14023.

    CrossRef  Google Scholar 

  29. Crunchant, A. S., Egerer, M., Loos, A., Burghardt, T., Zuberbühler, K., Corogenes, K., et al. (2017). Automated face detection for occurrence and occupancy estimation in chimpanzees. American Journal of Primatology, 79(3), 1–12.

    CrossRef  Google Scholar 

  30. Zhai, C., Landers, A., & Zhang, B. (2017). An RFID-based solution for monitoring sprayer movement in an orchard/vineyard. Precision Agriculture, 1–20.

    Google Scholar 

  31. Speed, C. W., Meekan, M. G., & Bradshaw, C. J. (2007). Spot the match–wildlife photo-identification using information theory. Frontiers in Zoology, 4(1), 2.

    CrossRef  Google Scholar 

  32. Xu, J., Solmaz, G., Rahmatizadeh, R., Turgut, D., & Boloni, L. (2016). Internet of things applications: animal monitoring with unmanned aerial vehicle. arXiv preprint arXiv:1610.05287.

  33. Mulero-Pázmány, M., Jenni-Eiermann, S., Strebel, N., Sattler, T., Negro, J. J., & Tablado, Z. (2017). Unmanned aircraft systems as a new source of disturbance for wildlife: A systematic review. PloS one, 12(6), e0178448.

    Google Scholar 

  34. Patel, A., Stocks, B., Fisher, C., Nicolls, F., & Boje, E. (2017). Tracking the Cheetah Tail Using Animal-Borne Cameras, GPS, and an IMU. IEEE sensors letters, 1(4), 1–4.

    Google Scholar 

  35. Rust, C.A., Burghardt, T., Groenenberg, M., Käding, C., Kühl, H.S., Manguette, M.L. and Denzler, J., 2017. Towards Automated Visual Monitoring of Individual Gorillas in the Wild. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (pp. 2820–2830).

    Google Scholar 

  36. Crouse, D., Jacobs, R. L., Richardson, Z., Klum, S., Jain, A., Baden, A. L., & Tecot, S. R. (2017). LemurFaceID: a face recognition system to facilitate individual identification of lemurs. BMC Zoology, 2(1), 2.

    Google Scholar 

  37. Trokielewicz, M., & Szadkowski, M. Iris and periocular recognition in arabian race horses using deep convolutional neural networks.

    Google Scholar 

  38. Kumar, S., Singh, S. K., Abidi, A. I., Datta, D., & Sangaiah, A. K. (2017). Group sparse representation approach for recognition of cattle on muzzle point images. International Journal of Parallel Programming, 1–26.

    Google Scholar 

  39. Kumar, S., Pandey, A., Satwik, K. S. R., Kumar, S., Singh, S. K., Singh, A. K., & Mohan, A. (2018). Deep learning framework for recognition of cattle using muzzle point image pattern. Measurement, 116, 1–17.

    Google Scholar 

  40. Sutherland, N. S. (1968). Outlines of a theory of visual pattern recognition in animals and man. Proceedings of the Royal Society of London. Series B, Biological Sciences, 297–317.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Santosh Kumar .

Rights and permissions

Reprints and Permissions

Copyright information

© 2017 Springer Nature Singapore Pte Ltd.

About this chapter

Verify currency and authenticity via CrossMark

Cite this chapter

Kumar, S., Singh, S.K., Singh, R., Singh, A.K. (2017). Animal Biometrics: Concepts and Recent Application. In: Animal Biometrics. Springer, Singapore. https://doi.org/10.1007/978-981-10-7956-6_1

Download citation

  • DOI: https://doi.org/10.1007/978-981-10-7956-6_1

  • Published:

  • Publisher Name: Springer, Singapore

  • Print ISBN: 978-981-10-7955-9

  • Online ISBN: 978-981-10-7956-6

  • eBook Packages: Computer ScienceComputer Science (R0)