A Study of Carbon Sequestration by Phytoplankton



Climate change is one of the most serious threats for sustainable development of human society. The release of carbon dioxide (CO2) from the atmosphere due to anthropogenic activities is one of the main causes of global warming and climate change. Reducing CO2 emission and increasing carbon storage are the two major solutions to control greenhouse effects. China is now one of the world’s largest greenhouse emitters, and actively dealing with climate change by reducing emission and increasing storage has become China’s strategic consensus for economic and social development. Oceans cover approximately 71% of the Earth’s surface, and the carbon content present in the ocean is 50 times that in the atmosphere and 20 times that in the soil (Holmén 2000). Therefore, oceans are the largest carbon pools on Earth, and it also serves as a “buffer” for climate change. Approximately 30% of the CO2 produced by anthropogenic activities is absorbed by oceans (Le Quere et al. 2014) (otherwise global warming would have become more intense). In particular, the coastal oceans are mostly affected by anthropogenic activities, which account for only 8% of the global ocean area, but the amount of 20% CO2 is taken by open oceans (Field et al. 1998).


Phytoplankton Carbon Sequestration Global Ocean Area Largest Carbon Pool Increase Carbon Storage 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.



Authors thanks the University Grants Commission, Govt. of India, New Delhi, for fellowship (MD) and Postdoctoral Fellowship (SDK) (Ref. No. F./31-1/2017/PDFSS-2017-18-TAM-13681 dated 19.06.2017).


  1. Allen, E.D., and D.H.N. Spence. 1981. The differential ability of aquatic plants to utilize the inorganic carbon supply in freshwaters. The New Phytologist 87: 269–283.CrossRefGoogle Scholar
  2. Boyd, P.W., A.J. Watson, C.S. Law, E.R. Abraham, T. Trull, R. Murdoch, D.C. Bakker, A.R. Bowie, K.O. Buesseler, H. Chang, M. Charette, P. Croot, K. Downing, R. Frew, M. Gall, M. Hadfield, J. Hall, M. Harvey, G. Jameson, J. LaRoche, M. Liddicoat, R. Ling, M.T. Maldonado, R.M. McKay, S. Nodder, S. Pickmere, R. Pridmore, S. Rintoul, K. Safi, P. Sutton, R. Strzepek, K. Tanneberger, S. Turner, A. Waite, and J. Zeldis. 2004. The decline and fate of an iron induced sub-arctic phytoplankton bloom. Nature 428: 549–553. Scholar
  3. Burkhardt, S., G. Amoroso, U. Riebesell, and D. Sultemeyer. 2001. CO2 and HCO3 uptake by marine diatoms acclimated to different CO2 concentrations. Limnology and Oceanography 46: 1378–1391.CrossRefGoogle Scholar
  4. Burns, B.D., and J. Beardall. 1987. Utilization of inorganic carbon by marine microalgae. Experimental Marine Biology and Ecology 107: 75–86.CrossRefGoogle Scholar
  5. Chapin, F.S., P.A. Matson, and H.A. Mooney. 2002. Principles of Ecosystems of Ecology. Vol. 405, 234–242. New York: Springer.Google Scholar
  6. Chisholm, S.W., P.G. Falkowski, and J.J. Cullen. 2001. Discrediting ocean fertilization. Science 294: 309–310.CrossRefGoogle Scholar
  7. Clark, D.R., and K.J. Flynn. 2000. The relationship between the dissolved inorganic carbon concentration and growth rate in marine phytoplankton. Proceedings of the Royal Society of London – Series B: Biological Sciences 267: 953–959.CrossRefGoogle Scholar
  8. Falkowski, P.G. 1997. Evolution of the nitrogen cycle and its influence on the biological sequestration of CO2 in the ocean. Nature 387: 272–275.CrossRefGoogle Scholar
  9. Falkowshi, P., R.J. Scholes, E. Boyle, J. Canadell, D. Canfield, J. Elser, N. Gruber, K. Hibbard, P. Hogbeng, S. Linder, F.T. Mackenizie, B. Moore, T. Pedersen, Y. Arosenthal, S. Seitzinger, V. Smetacek, and W. Steffen. 2000. The global carbon cycle: A test of our knowledge of earth as a system. Science 290: 291–296.CrossRefGoogle Scholar
  10. Field, C.B., M.J. Behrenfeld, J.T. Randerson, and P. Falkowski. 1998. Primary production of the biosphere: Integrating terrestrial and oceanic components. Science 281: 237–240.CrossRefGoogle Scholar
  11. Folger, P. 2009. The Carbon Cycle: Implications for Climate Change and Congress, Congressional Research Service Report RL34059, 7–57.Google Scholar
  12. Holmen, K. 2000. The global carbon cycle. International Geophysics 72: 282–321.CrossRefGoogle Scholar
  13. IPCC. 2007. The physical science basis. In Contribution of Working Group I to the Fourth Assessment Report of the IPCC on Climate Change, ed. S.D. Solomon, D. Qin, M. Manning, Z. Chen, M. Marquie, K.B. Averyt, M. Tignor, and H.L. Miller. Cambridge: Cambridge University Press.Google Scholar
  14. Johnson, K.S., D.M. Karl, S.W. Chisholm, P.G. Falowski, and J.J. Cullen. 2002. Is ocean fertilization credible and creditable? Science 296: 467–468.CrossRefGoogle Scholar
  15. Le Quere, C., G.P. Peters, R.J. Andres, R.M. Andrew, T.A. Boden, P. Ciais, P. Friedlingstein, R.A. Houghton, G. Marland, R. Moriarty, S. Sitch, P. Tans, A. Arneth, A. Arvanitis, D.C.E. Bakker, L. Bopp, J.G. Canadell, L.P. Chini, S.C. Doney, A. Harper, I. Harris, J.I. House, A.K. Jain, S.D. Jones, E. Kato, R.F. Keeling, K. Klein Goldewijk, A. Körtzinger, C. Koven, N. Lefèvre, F. Maignan, A. Omar, T. Ono, G.H. Park, B. Pfeil, B. Poulter, M.R. Raupach, P. Regnier, C. Rödenbeck, S. Saito, J. Schwinger, J. Segschneider, B.D. Stocker, T. Takahashi, B. Tilbrook, S. van Heuven, N. Viovy, R. Wanninkhof, A. Wiltshire, and S. Zaehle. 2014. Global carbon budget 2013. Earth System Science Data 6: 235–263.CrossRefGoogle Scholar
  16. Lurling, M., and W. Beekman. 1999. Grazer-induced defenses in Scenedesmus sp.(Chlorococcales; Chlorophyceae): Coenobium and spine formation. Phycologia 38: 368–376.CrossRefGoogle Scholar
  17. Maberly, S.C. 1996. Diel, episodic and seasonal changes in pH and concentrations of inorganic carbon in a productive lake. Freshwater Biology 35: 579–598.CrossRefGoogle Scholar
  18. Maberly, S.C., and D.H.N. Spence. 1983. Photosynthetic inorganic carbon use by freshwater plants. Journal of Ecology 71: 705–724.CrossRefGoogle Scholar
  19. Martin, J.H., and S.E. Fitzwater. 1988. Iron deficiency limits of phytoplankton growth in the North-East Pacific sub-Arctic. Nature 331: 341–343.CrossRefGoogle Scholar
  20. Martin, J.H., K.H. Coale, K.D. Johnson, S.E. Fitzwater, R.M. Garden, S.J. Tanner, C.N. Hunter, V.A. Elrod, J.L. Nowicki, T.L. Coley, R.T. Barber, S. Lindley, A.J. Watson, K. Vanscoy, C.S. Law, Mi. Liddi coat, R. Ling, T. Staton, J. Stockel, C. Collins, A. Anderson, R. Bidicare, M. Ondrusek, M. Latasa, F.J. Millero, K. Lee, W. Yao, J.Z. Zhang, G. Friederich, C. Sakamoto, F. Chavez, K. Buck, Z. Kolber, R. Greene, P. Falkowski, S.W. Chiswholm, F. Hoge, R. Swift, J. Yungel, S. Turner, P. Nightgale, A. Hatton, P. Liss, and N.W. Tindale. 2002. Testing the iron hypothesis in ecosystems of the equatorial Pacific Ocean. Nature 371: 123–129.CrossRefGoogle Scholar
  21. Munoz, J., and M.J. Merrett. 1988. Inorganic-carbon uptake by a small-shelled strain of Stichococcus bacillaris. Planta 175: 460–464.CrossRefGoogle Scholar
  22. Nimer, N.A., and M.J. Merrett. 1992. Calcification and utilization of inorganic carbon by the Coccolithophorid Emiliania huxleyi (Lohmann). The New Phytologist 121: 173–177.CrossRefGoogle Scholar
  23. Raven, J.A., and P.G. Falkowski. 1999. Oceanic sinks for atmospheric CO2. Plant, Cell & Environment 22: 741–755.CrossRefGoogle Scholar
  24. Rivkin, R.B., and L. Legendre. 2001. Biogenic carbon cycling in the upper ocean: Effects of microbial respiration. Science 291: 2398–2400.CrossRefGoogle Scholar
  25. Rost, B., U. Riebesell, and S. Burkhardt. 2003. Carbon acquisition of bloom forming marine phytoplankton. Limnology and Oceanography 48: 55–67.CrossRefGoogle Scholar
  26. Schippers, Peter, Antonie M. Verschoor, Matthijs Vos, and Wolf M. Mooij. 2001. Does “supersaturated coexistence” resolve the “paradox of the plankton”? Ecology Letters 4 (5): 404–407.CrossRefGoogle Scholar
  27. Schippers, P., J.E. Vermaat, J. de Klein, and W.M. Mooij. 2004. The effect of atmospheric carbon dioxide elevation on plant growth in freshwater ecosystems. Ecosystems 7: 63–74.CrossRefGoogle Scholar
  28. Siegenthaler, U., and J.L. Sarmiento. 1993. Atmospheric carbon dioxide and the ocean. Nature 365: 119–125.CrossRefGoogle Scholar
  29. Stumm, W., and J.J. Morgan. 1981. Aquatic Chemistry: An Introduction Emphasizing Chemical Equilibria in Natural Waters. New York: John Wiley & Sons. 780p.Google Scholar

Copyright information

© Springer Nature Singapore Pte Ltd. 2019

Authors and Affiliations

  1. 1.Marine Planktonology & Aquaculture Laboratory, Department of Marine Science, School of Marine SciencesBharathidasan UniversityTiruchirappalliIndia

Personalised recommendations