Skip to main content

Part of the book series: Springer Theses ((Springer Theses))

  • 284 Accesses

Abstract

The formation and evolution of Archean continental crust as well as related crust-mantle geodynamic evolution history are the major focus of Precambrian studies. As one of the oldest cratons in the world, the North China Craton is dominated by late Neoarchean (~2.6–2.5 Ga) geological events. However, it is still hotly debated about the nature of these major episodes of tectonothermal processes, i.e., whether they represent crustal growth or reworking, and how about the geodynamic regimes (plate tectonics or mantle plume setting)? Systematic studies of lithological assemblage of the basement rocks, petrogenesis, and crust-mantle interactions are key to resolve the above issues. In this chapter, we provide geological, petrological, whole-rock geochemical, and zircon U–Pb and Lu–Hf isotopic data for representative late Neoarchean greenstone metavolcanic rocks and granitoid gneisses in the Western Liaoning Province (WLP) along the northern margin of Eastern Block. It is suggested that magmatic precursors of the metavolcanic rocks in the Fuxin greenstone belt were erupted during ~2640–2534 Ma, and they show dominantly positive zircon εHf(t2) values of +2.7 to +9.7. These metavolcanic rocks show chemical affinities to Mid-ocean ridge basalts (MORBs), island arc tholeiitic to calc-alkaline basalts, adakite-like and high magnesium andesites, respectively, and they were considered to have been generated by the partial melting of upwelling asthenospheric mantle beneath an Archean spreading ridge and complex interactions between the depleted mantle wedge lithospheric mantle and slab-derived fluids and melts, respectively. Dioritic to TTG gneisses are the major lithologies in the WLP. They were emplaced during ~2532–2506 Ma, and show intrusive relationships with the metavolcanic rocks, with chiefly positive zircon εHf(t2) values of +1.2 to +8.4. Based on mineral assemblages and chemical features, these granitoid gneisses were subdivided into a high magnesium group (HMG) and a low magnesium group (LMG), which could have been derived from the partial melting of descending oceanic slabs and metabasaltic rocks at the arc root, respectively. Some volume of potassium-rich granitoid gneisses, including granodioritic and monzogranitic rocks with weakly gneissic to massive structures, intruded both the supracrustal metavolcanic rocks and the strongly deformed dioritic to TTG gneisses. They were formed at ~2495 Ma with zircon εHf(t2) values of +0.9 to +7.6, which were suggested to have been produced by the partial melting of metamorphosed felsic to sedimentary rocks under an extensional setting. Most of the above lithologies were subjected to ~2485 Ma regional peak granulite facies and ~2450–2401 Ma retrograde metamorphism. ~2.4–1.7 Ga metamorphic imprints could be ascribed to the middle to late Paleoproterozoic tectonothermal events prevailed along the northern margin of NCC. Accordingly, the Western Liaoning Province experienced complex late Neoarchean subduction-accretion processes from mid-ocean ridge spreading, through initiation and maturation of an intra-oceanic arc system, to the final arc-continent accretion. It records intense ~2.6–2.5 Ga subduction-related crustal growth, and the Archean lithospheric mantle sources beneath the northern margin of NCC could have been transformed from juvenile oceanic lithospheric mantle that was initially formed under the oceanic spreading ridge, and they were subjected to gradual metasomatism by slab-derived fluids and melts. All the above data indicate that intra-oceanic subduction and arc-continent accretion within an accretionary orogen could have been an important mechanism of continental growth along the northwestern margin of Eastern Block in the Neoarchean.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Altherr R, Holl A, Hegner E (2000) High-potassium, calc-alkaline I-type plutonism in the European Variscides: Northern Vosges (France) and northern Schwarzwald (Germany). Lithos 50:51–73

    Article  Google Scholar 

  2. Anderson T (2002) Correlation of common lead in U–Pb analyses that do not report 204Pb. Chem Geol 192:59–79

    Google Scholar 

  3. Arzi AA (1978) Critical phenomena in the rheology of partially melted rocks. Tectonophysics 44:173–184

    Article  Google Scholar 

  4. Ayres M, Harris N (1997) REE fractionation and Nd-isotope disequilibrium during crustal anatexis: constraints from Himalayan leucogranites. Chem Geol 139:249–269

    Article  Google Scholar 

  5. Barker F (1979) Trondhjemite: definition, environment and hypotheses of origin. In: Barker F (ed) Trondhjemites, Dacites, and related rocks. Elsevier, Amsterdam, pp 1–12

    Google Scholar 

  6. Blichert-Toft J, Albarède F (1997) The Lu-Hf geochemistry of chondrites and the evolution of the mantle-crust system. Earth Planet Sci Lett 148:243–258

    Article  Google Scholar 

  7. Cabanis B, Lecolle M (1989) Le diagramme La/10-Y/15-Nb/8: un outil pour la discrimination des series volcaniques et la mise en evidence des processus de melange et/ou de contamination crustale. C.R. Acad Sci Ser II 309:2023–2029

    Google Scholar 

  8. Castillo PR (2012) Adakite petrogenesis. Lithos 134–135:304–316

    Article  Google Scholar 

  9. Castillo PR, Janney PE, Solidum RU (1999) Petrology and geochemistry of Camiguin Island, southern Philippines: insights to the source of adakites and other lavas in a complex arc setting. Contrib Mineral Petrol 134:33–51

    Article  Google Scholar 

  10. Condie KC (1998) Episodic continental growth and supercontinents: a mantle avalanche connection? Earth Planet Sci Lett 163:97–108

    Article  Google Scholar 

  11. Condie KC (2005) High field strength element ratios in Archean basalts: a window to evolving sources of mantle plumes? Lithos 79:491–504

    Article  Google Scholar 

  12. Condie KC, O’Neill C, Aster RC (2009) Evidence and implications for a widespread magmatic shutdown for 250 My on Earth. Earth Planet Sci Lett 282:294–298

    Article  Google Scholar 

  13. Corfu F, Hanchar JM, Hoskin PWO, Kinny P (2003) Atlas of zircon textures. In: Hanchar JM, Hoskin PWO (eds) Zircon, 53. Mineralogical Society of America Reviews in Mineralogy and Geochemistry, pp 469–500

    Google Scholar 

  14. Defant MJ, Drummond MS (1990) Derivation of some modern arc magmas by melting of young subducted lithosphere. Nature 347:662–665

    Article  Google Scholar 

  15. Ernst RE, Wingate MTD, Buchan KL, Li ZX (2008) Global record of 1600–700 Ma Large Igneous Provinces (LIPs): implications for the reconstruction of the proposed Nuna (Columbia) and Rodinia supercontinents. Precambr Res 160:159–178

    Article  Google Scholar 

  16. Foley S, Tiepolo M, Riccardo V (2002) Growth of early continental crust controlled by melting of amphibolite in subduction zones. Nature 417:837–840

    Article  Google Scholar 

  17. Frey FA, Prinz M (1978) Ultramafic inclusions from San Carlos, Arizona: petrologic and geochemical data bearing on their petrogenesis. Earth Planet Sci Lett 38:129–176

    Google Scholar 

  18. Geng YS, Liu FL, Yang C (2006) Magmatic event at the end of the Archean in eastern Hebei Province and its geological implication. Acta Geol Sin (English version) 80:819–833

    Google Scholar 

  19. Grant ML, Wilde SA, Wu FY, Yang JH (2009) The application of zircon cathodoluminescence imaging, Th–U–Pb chemistry and U–Pb ages in interpreting discrete magmatic and high-grade metamorphic events in the North China Craton at the Archean/Proterozoic boundary. Chem Geol 261:155–171

    Google Scholar 

  20. Griffin WL, Pearson NJ, Belousova E, Jackson SE, van Achterbergh E, O’Reilly SY, Shee SR (2000) The Hf isotope composition of cratonic Mantle, LA-MC-ICPMS analysis of zircon megacrysts in kimberlites. Geochim Cosmochim Acta 64:133–147

    Article  Google Scholar 

  21. Guo RR, Liu SW, Santosh M et al (2013) Geochemistry, zircon U-Pb geochronology and Lu-Hf isotopes of metavolcanics from eastern Hebei reveal Neoarchean subduction tectonics in the North China Craton. Gondwana Res 24:664–686

    Article  Google Scholar 

  22. Hawkesworth CJ, Gallagher K, Hergt JM, McDetmott F (1993) Mantle and slab contributions in arc magmas. Annu Rev Earth Planet Sci 21:175–204

    Article  Google Scholar 

  23. Heilimo E, Halla J, Hölttä P (2010) Discrimination and origin of the sanukitoid series: geochemical constraints from the Neoarchean western Karelian Province (Finland). Lithos 115:27–39

    Article  Google Scholar 

  24. Huang XL, Xu YG, Lan JB, Yang QJ, Luo ZY (2009) Neoproterozoic adakitic rocks from Mopanshan in the western Yangtze Craton: partial melting of a thickened lower crust. Lithos 112:367–381

    Article  Google Scholar 

  25. Jahn B, Glikson AY, Peucat JJ, Hickman AH (1981) REE geochemistry and isotopic data of Archaean silicic volcanics and granitoids from the Pilbara block, Western Australia: implications for early crustal evolution. Geochim Cosmochim Acta 45:1633–1652

    Article  Google Scholar 

  26. Jourdan F, Bertrand H, Schärer U, Blichert-Toft J, Féraud G, Kampunzu AB (2007) Major and trace element and Sr, Nd, Hf, and Pb isotope compositions of the Karoo large igneous province, Botswana-Zimbabwe: lithospheric vs mantle plume contribution. J Petrol 48:1043–1077

    Article  Google Scholar 

  27. Kalsbeek F, Jepsen HF, Jones KA (2001) Geochemistry and petrogenesis of S-type granites in the East Greenland Caledonides. Lithos 57:91–109

    Article  Google Scholar 

  28. Katz O, Beyth M, Miller N, Stern R, Avigad D, Basu A, Anbar A (2004) A late Neoproterozic (630 Ma) high-magnesium andesite suite from southern Israel: implications for the consolidation of Gondwanaland. Earth Planet Sci Lett 218:475–490

    Article  Google Scholar 

  29. Kelemen PB, Hanghoj K, Greene AR (2004) One view of the geochemistry of subduction-related magmatic arcs, with emphasis on primitive andesite and lower crust. In: Rudnick RL (ed) The crust, treatise on geochemistry, vol 3. Elsevier, Netherlands, pp 593–659

    Google Scholar 

  30. Kerrich R, Xie QL (2002) Compositional recycling structure of an Archean super-plume: Nb-Th-U-LREE systematics of Archean komatiites and basalts revised. Contrib Miner Petrol 142:476–484

    Article  Google Scholar 

  31. Kerrich R, Wyman D, Fan J (1998) Boninite series: low Ti-tholeiite associations from the 2.7 Ga Abitibi greenstone belt. Earth Planet Sci Lett 164:303–316

    Article  Google Scholar 

  32. Kröner A, Cui WY, Wang SQ, Wang CQ, Nemchin AA (1998) Single zircon ages from high-grade rocks of the Jianping Complex, Liaoning Province, NE China. J Asian Earth Sci 16:519–532

    Article  Google Scholar 

  33. LaFlèche MR, Camire G, Jenner GA (1998) Geochemistry of post-Acadian, carboniferous continental intraplate basalts from the Maritimes basin, Magdalen islands, Quebec, Canada. Chem Geol 148:115–136

    Article  Google Scholar 

  34. Laurent O, Martin H, Moyen JF, Doucelance R (2014) The diversity and evolution of late-Archean granitoids: evidence for the onset of “modern-style” plate tectonics between 3.0 and 2.5 Ga. Lithos 205:208–235

    Article  Google Scholar 

  35. Li SG (1993) Ba-Nb-Th-La diagrams used to identify tectonic environments of ophiolite. Acta Petrol Sin 9:146–157 (in Chinese with English abstract)

    Google Scholar 

  36. Lin BQ, Cui WY, Wang SQ, Shen ES (1997) The Archean geology and gold deposits in Western Liaoning Province. Seismological Press, Beijing, pp 1–130 (in Chinese)

    Google Scholar 

  37. Liu SW, Pan YM, Li JH, Zhang J, Li QG (2002) Geological and isotopic geochemical constraints on the evolution of the Fuping complex, North China Craton. Precambr Res 117:41–56

    Article  Google Scholar 

  38. Liu SW, Pan YM, Xie QL, Zhang J, Li QG (2004) Archean geodynamics in the Central Zone, North China craton: constraints from geochemistry of two contrasting series of granitoids in the Fuping and Wutaishan complexes. Precambr Res 130:229–249

    Article  Google Scholar 

  39. Liu SW, Tian W, Lv YJ et al (2006) Geochemistry, Nd isotopic characteristics of metamorphic complexes in Northern Hebei: implications for crustal accretion. Acta Geol Sin (English version) 80:807–818

    Google Scholar 

  40. Liu SW, Lü YJ, Feng YG, Zhang C, Tian W, Yan QR, Liu XM (2007) Geology and zircon U-Pb isotopic chronology of Dantazi complex, Northern Hebei Province. Geol J China Univ 13:484–497 (in Chinese with English abstract)

    Google Scholar 

  41. Liu SW, Lü YJ, Feng YG, Liu XM, Yan QR, Zhang C, Tian W (2007) Zircon and monazite geochronology of the Hongqiyingzi complex, northern Hebei, China. Geol Bull China 26:1086–1100 (in Chinese with English abstract)

    Google Scholar 

  42. Liu SW, Wang W, Bai X, Zhang F (2010) Geological events of early Precambrian complex in North Chaoyang area, Liaoning Province. Acta Petrol Sin 26:1993–2004 (in Chinese with English abstract)

    Google Scholar 

  43. Liu SW, Santosh M, Wang W, Bai X, Yang PT (2011) Zircon U-Pb chronology of the Jianping Complex: implications for the Precambrian crustal evolution history of the northern margin of North China Craton. Gondwana Res 20:48–63

    Article  Google Scholar 

  44. Liu SW, Zhang J, Li QG, Zhang LF, Wang W, Yang PT (2012) Geochemistry and U-Pb zircon ages of metamorphic volcanic rocks of the Paleoproterozoic Lüliang complex and constraints on the evolution of the Trans-North China Orogen, North China Craton. Precambr Res 222–223:173–190

    Article  Google Scholar 

  45. Maniar PD, Piccoli PM (1989) Tectonic discrimination of granitoids. Geol Soc Am Bull 101:635–643

    Article  Google Scholar 

  46. Manikyamba C, Kerrich R (2011) Geochemistry of alkaline basalts and associated high-Mg basalts from the 2.7 Ga Penakacherla Terrane, Dharwar craton, India: an Archean depleted mantle-OIB array. Precambr Res 188:104–122

    Article  Google Scholar 

  47. Manikyamba C, Kerrich R (2012) Eastern Dharwar Craton, India: continental lithosphere growth by accretion of diverse plume and arc terranes. Geosci Front 3:225–240

    Article  Google Scholar 

  48. Manikyamba C, Ganguly S, Santosh M, Saha A, Chatterjee A, Khelen AC (2015) Neoarchean arc-juvenile back-arc magmatism in eastern Dharwar Craton, India: geochemical fingerprints from the basalts of Kadiri greenstone belt. Precambr Res 258:1–23

    Article  Google Scholar 

  49. Martin H (1999) Adakitic magmas: modern analogues of Archean granitoids. Lithos 46:411–429

    Article  Google Scholar 

  50. Martin H, Smithies RH, Moyen JF, Champion D (2005) An overview of adakite, tonalite-trondhjemite-granodiorite (TTG), and sanukitoid: relationships and some implications for crust evolution. Lithos 79:1–24

    Article  Google Scholar 

  51. Martin H, Moyen JF, Rapp R (2010) The sanukitoid series: magmatism at the Archaean-Proterozoic transition. In: Sixth Hutton symposium on the origin of granites and related rocks: proceedings of a symposium held in Stellenbosch, South Africa, 2–6 July 2007. Cambridge University Press, p 15

    Google Scholar 

  52. Moyen JF (2009) High Sr/Y and La/Yb ratios, the meaning of the “adakitic signature”. Lithos 112:556–574

    Article  Google Scholar 

  53. Moyen JF (2011) The composite Archaean grey gneisses: petrological significance, and evidence for a non-unique tectonic setting for Archaean crustal growth. Lithos 123:21–36

    Article  Google Scholar 

  54. Moyen JF, Martin H (2012) Forty years of TTG research. Lithos 148:312–336

    Article  Google Scholar 

  55. Moyen JF, Martin H, Jayananda M, Auvray B (2003) Late Archean granites: a typology based on the Dharwar Craton (India). Precambr Res 127:103–123

    Article  Google Scholar 

  56. Naqvi SM, Khan RMK, Manikyamba C et al (2006) Geochemistry of the Neoarchaean high-Mg basalts, boninites and adakites from the Kushtagi-Hungund greenstone belt of the Eastern Dharwar Craton (EDC): implications for the tectonic setting. J Asian Earth Sci 27:25–44

    Article  Google Scholar 

  57. Nutman AP, Wan YS, Du LL, Friend CRL, Dong CY, Xie HQ, Wang W, Sun HY, Liu DY (2011) Multistage late Neoarchaean crustal evolution of the North China Craton, eastern Hebei. Precambr Res 189:43–65

    Article  Google Scholar 

  58. Ordóñez-Calderón JC, Polat A, Fryer BJ et al (2009) Geochemistry and geodynamic origin of the Mesoarchean Ujarassuit and Ivisaartoq greenstone belts, SW Greenland. Lithos 113:133–157

    Article  Google Scholar 

  59. Pearce JA (2008) Geochemical fingerprinting of oceanic basalts with applications to ophiolite classification and the search for Archean oceanic crust. Lithos 100:14–48

    Article  Google Scholar 

  60. Pearce JA (2014) Geochemical Fingerprinting of the Earth’s Oldest Rocks. Geology 42:175–176

    Article  Google Scholar 

  61. Pearce JA, van der Laan S, Arculus RJ, Murton BJ, Ishii T, Peate DW (1992) Boninite and Harzburgite from Leg 125 (Bonin–Mariana Fore-arc): a case study of magma genesis during the initial stage of subduction. In: Fryer P, Pearce JA, Stokking LB (eds) Proceedings for the Ocean Drilling Program: Sci. Results vol 125, pp 623–659

    Google Scholar 

  62. Polat A (2013) Geochemical variations in Archean volcanic rocks, southwestern Greenland: traces of diverse tectonic settings in the early Earth. Geology 41:379–380

    Article  Google Scholar 

  63. Polat A, Hofmann AW (2003) Alteration and geochemical patterns in the 3.7–3.8 Ga Isua greenstone belt, West Greenland. Precambr Res 126:197–218

    Article  Google Scholar 

  64. Polat A, Kerrich R (2001) Magnesian andesites, Nb-enriched basalt-andesites, and adakites from late-Archean 2.7 Ga Wawa greenstone belts, Superior Province, Canada: implications for late Archean subduction zone petrogenetic processes. Contrib Miner Petrol 141:36–52

    Article  Google Scholar 

  65. Polat A, Kerrich R (2002) Nd-isotope systematics of ~2.7 Ga adakites, magnesian andesites, and arc basalts, Superior Province: evidence for shallow crustal recycling at Archean subduction zones. Earth Planet Sci Lett 202:345–360

    Article  Google Scholar 

  66. Polat A, Kerrich R, Wyman DA (1999) Geochemical diversity in oceanic komatiites and basalts from the late Archean Wawa greenstone belts, Superior Province, Canada: trace element and Nd isotope evidence for a heterogeneous mantle. Precambr Res 94:139–173

    Article  Google Scholar 

  67. Polat A, Hofmann AW, Rosing MT (2002) Boninite-like volcanic rocks in the 3.7–3.8 Ga Isua greenstone belt, West Greenland: geochemical evidence for intra-oceanic subduction zone processes in the early Earth. Chem Geol 184:231–254

    Article  Google Scholar 

  68. Rapp RP, Watson EB (1995) Dehydration melting of metabasalt at 8-32 kbar: implications for continental growth and crust-mantle recycling. J Petrol 36:891–931

    Article  Google Scholar 

  69. Reagan MK, Stern RJ, Kelley KA et al (2010) Fore-arc basalts and subduction initiation in the Izu-Bonin-Marianan system. Geochem Geophys Geosysterms 11, https://doi.org/10.1029/2009gc002871

  70. Rollinson HR (1993) Using geochemical data: evaluation, presentation, interpretation. Pearson Education Limited, London

    Google Scholar 

  71. Ross PS, Bédard JH (2009) Magmatic affinity of modern and ancient subalkaline volcanic rocks determined from trace-element discriminant diagrams. Can J Earth Sci 46:823–839

    Article  Google Scholar 

  72. Rubatto D (2002) Zircon trace element geochemistry: partitioning with garnet and the link between U-Pb ages and metamorphism. Chem Geol 184:123–138

    Article  Google Scholar 

  73. Sajona FG, Maury RC, Bellon H et al (1996) High field strength element enrichment of Pliocene-Pleistocene island arc basalts, Zamboanga Peninsula, western Mindanao (Philippines). J Petrol 37:693–726

    Article  Google Scholar 

  74. Schiano P, Monzier M, Eissen JP, Martin H, Koga KT (2010) Simple mixing as the major control of the evolution of volcanic suites in the Ecuadorian Andes. Contrib Miner Petrol 160:297–312

    Article  Google Scholar 

  75. Smithies RH (2000) The Archean tonalite-trondhjemite-granodiorite (TTG) series is not an analogue of Cenozoic adakite. Earth Planet Sci Lett 182:115–125

    Article  Google Scholar 

  76. Stevenson R, Henry P, Gariépy C (1999) Assimilation-fractional crystallization origin of Archean Sanukitoid suites: Western Superior Province, Canada. Precambr Res 96:83–99

    Article  Google Scholar 

  77. Streck MJ, Leeman WP, Chesley J (2007) High-magnesian andesite from Mount Shasta: a product of magma mixing and contamination, not a primitive mantle melt. Geology 35:351–354

    Article  Google Scholar 

  78. Sun SS, McDonough WF (1989) Chemical and isotopic systematics of oceanic basalts: implication for mantle composition and processes. In: Saunders AD, Norry MJ (eds) Magmatism in ocean basins. Geological Society of London, Special Publication 42, pp 313–345

    Google Scholar 

  79. Sylvester PJ (1998) Post-collisional strongly peraluminous granites. Lithos 45:29–44

    Google Scholar 

  80. Szilas K, Hoffmann JE, Munker C et al (2014) Eoarchean within-plate basalts from southwest Greenland. Geology 42:330

    Article  Google Scholar 

  81. Taylor SR, McLennan SM (1985) The continental crust: its composition and evolution. Blackwell, Oxford

    Google Scholar 

  82. Teklay M (2006) Neoproterozoic arc-back-arc system analog to modern arc-back-arc systems: evidence from tholeiite-boninite association, serpentinite mudflows and across-arc geochemical trends in Eritrea, southern Arabian-Nubian shield. Precambr Res 145:81–92

    Article  Google Scholar 

  83. Treuil M, Joron JM (1975) Utilization des elements hydromagmayophiles pour la simplification de la modelisation quantitative des processes magmatiques. Exeples de l’Afar et de da dorsale medioatlantique. Rend SMP 31:125–174

    Google Scholar 

  84. Turner S, Rushmer T, Reagan M, Moyen JF (2014) Heading down early on? Start of subduction on Earth. Geology 42:139–142

    Article  Google Scholar 

  85. Wan YS, Liu DY, Wang SJ et al (2010) Juvenile magmatism and crustal recycling at the end of the Neoarchean in Western Shandong Province, North China Craton: evidence from SHRIMP zircon dating. Am J Sci 310:1503–1552

    Article  Google Scholar 

  86. Wan YS, Dong CY, Liu DY, Kröner A, Yang CH, Wang W, Du LL, Xie HQ, Ma MZ (2012) Zircon ages and geochemistry of late Neoarchean syenogranites in the North China Craton: a review. Precambr Res 222–223:265–289

    Article  Google Scholar 

  87. Wang Q, McDermott F, Xu JF, Bellon H, Zhu YT (2005) Cenozoic K-rich adakitic volcanic rocks in the Hohxil area, northern Tibet: lower-crustal melting in an intra- continental setting. Geology 33:465–468

    Article  Google Scholar 

  88. Wang YJ, Zhang YZ, Zhao GC, Fan WM, Xia XP, Zhang FF, Zhang AM (2009) Zircon U-Pb geochronological and geochemical constaints on the petrogenesis of the Taishan sanukitoids (Shandong): implications for Neoarchean subduction in the Eastern Block, North China Craton. Precambr Res 174:273–286

    Article  Google Scholar 

  89. Wang W, Liu SW, Bai X, Yang PT, Li QG, Zhang LF (2011) Geochemistry and zircon U-Pb-Hf isotopic systematics of the Neoarchean Yixian-Fuxin greenstone belt, northern margin of the North China Craton: implications for petrogenesis and tectonic setting. Gondwana Res 20:64–81

    Article  Google Scholar 

  90. Wang W, Liu SW, Wilde SA, Li QG, Zhang J (2012) Petrogenesis and geochronology of Precambrian granitoid gneisses in Western Liaoning Province: constraints on Neoarchean to early paleoproterozoic crustal evolution of the North China Craton. Precambr Res 222–223:290–311

    Article  Google Scholar 

  91. Wang W, Liu SW, Bai X et al (2013) Zircon U-Pb-Hf isotopes and whole-rock geochemistry of granitoid gneisses in the Jianping gneissic terrane, Western Liaoning Province: constraints on the Neoarchean crustal evolution of the North China Craton. Precambr Res 224:184–221

    Article  Google Scholar 

  92. Wang W, Liu SW, Bai X, Li QG, Yang PT, Zhao Y, Zhang SH, Guo RR (2013) Geochemistry and zircon U-Pb-Hf isotopes of the late Paleoproterozoic Jianping diorite-monzonite-syenite suites of the North China Craton: implications for petrogenesis and geodynamic setting. Lithos 162–163:175–194

    Article  Google Scholar 

  93. Wang W, Liu SW, Santosh M, Wang GH, Bai X, Guo RR (2015) Neoarchean intra-oceanic arc system in the Western Liaoning Province: implications for early Precambrian crustal evolution in the Eastern block of the North China Craton. Earth Sci Rev 150:329–364

    Article  Google Scholar 

  94. Watkins JM, Clemens JD, Treloar PJ (2007) Archean TTGs as sources of younger granitic magmas: melting of sodic metatonalites at 0.6-1.2 GPa. Contrib Miner Petrol 154:91–110

    Google Scholar 

  95. Whalen JB, Percival JA, McNicoll VJ, Longstaffe FJ (2004) Geochemical and isotopic (Nd-O) evidence bearing on the origin of late- to post-orogenic high-K granitoid rocks in the Western Superior Province: implication for late Archean tectonomagmatic processes. Precambr Res 132:303–326

    Article  Google Scholar 

  96. Whitehouse MJ, Kamber BS (2003) A rare earth element study of complex zircons from early Archaean Amîtsoq gneisses, Godthåbsfjord, south-west Greenland. Precambr Res 126:363–377

    Article  Google Scholar 

  97. Winchester JA, Floyd PA (1976) Geochemical magma type discrimination: application to altered and metamorphosed basic igneous rocks. Earth Planet Sci Lett 28:459–469

    Article  Google Scholar 

  98. Xu YG, Chuang SL, Jahn BM, Wu GY (2001) Petrologic and geochemical constraints on the peteogenesis of Permian-Triassic Emeishan flood basalts in southwestern China. Lithos 58:145–168

    Article  Google Scholar 

  99. Zamora D (2000) Fusion de la croute oceanique subductee: approche experimentale et geochimique. Universite Thesis Universite Blaise Pascal, Clermont-Ferrand, p 314

    Google Scholar 

  100. Zeh A, Gerdes A, Barton JMJ (2009) Archean accretion and crustal evolution of the Kalahari Cratonçthe zircon age and Hf isotope record of granitic rocks from Barberton/Swaziland to the Francistown Arc. J Petrol 50:933–966

    Google Scholar 

  101. Zeh A, Gerdes A, Klemd R et al (2007) Archaean to Proterozoic crustal evolution in the central zone of the Limpopo Belt (South Africa-Botswana): constraints from Combined U-Pb and Lu-Hf isotope analyses of Zircon. J Petrol 48:1605–1639

    Article  Google Scholar 

  102. Zhang SH, Liu SW, Zhao Y, Yang JH, Song B, Liu XM (2007) The 1.75-1.68 Ga anorthosite-mangerite-alkali granitoid-rapakivi granite suite from the northern North China Craton: magmatism related to a Paleoproterozoic orogen. Precambr Res 155:287–312

    Article  Google Scholar 

  103. Zhao GC, Wilde SA, Cawood PA et al (1999) Thermal evolution of two types of mafic granulites from the North China Craton: implications for both mantle plume and collisional tectonics. Geol Mag 136:223–240

    Article  Google Scholar 

  104. Zhao GC, Sun M, Wilde SA et al (2005) Late Archean to Proterozoic evolution of the North China Craton: key issues revisited. Precambr Res 136:177–202

    Article  Google Scholar 

  105. Zhao GC, He YH, Sun M (2009) The Xiong’er volcanic belt at the southern margin of the North China Craton: petrographic and geochemical evidence for its outboard position in the Paleo-Mesoproterozoic Columbia supercontinent. Gondwana Res 16:170–181

    Article  Google Scholar 

  106. Zhao GC, Cawood PA, Li SZ, Wilde SA, Sun M, Zhang J, He YH, Yin CQ (2012) Amalgamation of the North China Craton: key issues and discussions. Precambr Res 222–223:55–76

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Wei Wang .

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Wang, W. (2018). Neoarchean Basement Rock Assemblage, Crustal Evolution and Crust-Mantle Interactions of Western Liaoning Province. In: Archean-Mesoproterozoic Crustal Evolution and Crust-Mantle Geodynamics of Western Liaoning-Northeastern Hebei Provinces, North China Craton. Springer Theses. Springer, Singapore. https://doi.org/10.1007/978-981-10-7922-1_3

Download citation

Publish with us

Policies and ethics