Skip to main content

Part of the book series: Springer Theses ((Springer Theses))

Abstract

Galinge, the largest iron (Fe) polymetallic skarn deposit in the Qinghai province (NW China), is located in the Qiman Tagh metallogenic belt. At Galinge, post-collisional calc-alkaline metaluminous intrusions, including granodiorite, diorite and diorite porphyry dikes were emplaced into the Cambrian to Ordovician Qiman Tagh strata. Zircon U-Pb dating for granitic rocks yielded ca. 229 ‒ 217 Ma. Phlogopite coexisting with disseminated magnetite was dated to be 234.2 ± 3.5 Ma by Ar-Ar technique, indicating a close temporal magmatic-metallogenic relationship. Geochemically, the Qiman Tagh granodiorite is enriched in light earth element (LREE) with moderately negative Eu anomalies. Such geochemical data and zircon Hf isotopic data suggest that the studied granodiorite might be generated by low-degree partial melting of the amphibolite-facies metamorphosed rocks, whereas the Galinge diorite and diorite porphyry dykes were probably generated by higher degree of partial melting of the residual materials after granodioritic magma. We propose that the Galinge granitic magmatism and skarn Fe mineralization were formed under Late Triassic post-collisional extension after the closure of the Paleo-Tethys.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Amelin Y, Lee D, Halliday AN et al (1999) Nature of the Earth’s earliest crust from hafnium isotopes in single detrital zircons. Nature 399(6733):252–255

    Article  Google Scholar 

  2. Bai YN, Sun FY, Jian Y, Liu HC, Zhang DM (2016) Zircon U-Pb geochronology and geochemistry of pyroxene diorite in Galinge iron-polymetallic deposit. East Kunlun. Global Geol 35(1):17–27

    Google Scholar 

  3. Barbarin B (1999) A review of the relationships between granitoid types, their origins and their geodynamic environments. Lithos 46(3):605–626

    Article  Google Scholar 

  4. Bing Q, Gao YB, Li K et al (2015) Zircon U-Pb-Hf isotopes and whole rock geochemistry constraints on the petrogenesis of iron-rare metal mineralization related alkaline granitic intrusive rock in Yugouzi area, eastern Kunlun, Xinjiang. Acta Petrol Sin 31(9):2508–2520

    Google Scholar 

  5. Bonin B (1990) From orogenic to anorogenic settings: evolution of granitoid suites after a major orogenesis. Geol J 25(3–4):261–270

    Article  Google Scholar 

  6. Brown GC, Fyfe WS (1970) The production of granitic melts during ultrametamorphism. Contrib Mineral Petrol 28(4):310–318

    Article  Google Scholar 

  7. Chappell BW (1999) Aluminium saturation in I- and S-type granites and the characterization of fractionated haplogranites. Lithos 46(3):535–551

    Article  Google Scholar 

  8. Chappell BW, White A (1992) I- and S-type granites in the Lachlan Fold Belt. Geol Soc Am Spec Pap 272:1–26

    Google Scholar 

  9. Chen SS, Fu YX, Bao GY et al (2009) Characteristics and genesis of the Galinge polymetallic Fe deposit in west segment of East Kunlun Moutain, Qinghai province. Miner Resour Geol 23(6):542–546

    Google Scholar 

  10. Chu NC, Taylor RN, Chavagnac V et al (2002) Hf isotope ratio analysis using multi-collector inductively coupled plasma mass spectrometry: an evaluation of isobaric interference corrections. J Anal Atom Spectrom 17(12):1567–1574

    Article  Google Scholar 

  11. Connelly JN (2001) Degree of preservation of igneous zonation in zircon as a signpost for concordancy in U/Pb geochronology. Chem Geol 172(1):25–39

    Article  Google Scholar 

  12. Defant MJ, Drummond MS (1990) Derivation of some modern arc magmas by melting of young subducted lithosphere. Nature 347(6294):662–665

    Article  Google Scholar 

  13. Didier J, Barbarin B (1991) The different types of enclaves in granites-nomenclature. Enclaves Granite Petrol 13:19–24

    Google Scholar 

  14. Didier J, Renouf JT (1973) Granites and their enclaves: the bearing of enclaves on the origin of granites. Elsevier, Amsterdam

    Google Scholar 

  15. Drummond MS, Defant MJ, Kepezhinskas PK (1996) Petrogenesis of slab-derived trondhjemite–tonalite–dacite/adakite magmas. Trans R Soc Edinb: Earth Sci 87(1–2):205–215

    Google Scholar 

  16. Elhlou S, Belousova E, Griffin WL et al (2006) Trace element and isotopic composition of GJ-red zircon standard by laser ablation. Geochim Cosmochim Acta 70(18):A158

    Article  Google Scholar 

  17. Ellis DJ, Thompson AB (1986) Subsolidus and partial melting reactions in the quartz-excess CaO + MgO + Al2O3 + SiO2 + H2O system under water-excess and water-deficient conditions to 10 kb: some implications for the origin of peraluminous melts from mafic rocks. J Petrol 27(1):91–121

    Article  Google Scholar 

  18. Ersoy EY (2013) PETROMODELER (Petrological Modeler): a Microsoft® Excel© spreadsheet program for modelling melting, mixing, crystallization and assimilation processes in magmatic systems. Turk J Earth Sci 22(1)

    Google Scholar 

  19. Feng CY, Li DS, Qu WD et al (2009) Re-Os Iisotopic dating of molybdenite from the Suolajier skarn-type copper-molybdenum deposit of Qimantage Mountain in Qinghai Province and its geological significance. Rock Mineral Anal 28(3):223–227

    Google Scholar 

  20. Feng CY, Li DS,Wu ZS, Li JH, Zhang ZY, Zhang AK, Shu XF, Su SS (2010) Major types, time-space distribution and metallogenesis of polymetallic deposits in the Qimantage metallogenic belt, eastern Kunlun area. Northwestern Geol 43(4):10–17

    Google Scholar 

  21. Feng CY, Wang XP, Shu XF et al (2011) Isotopic chronology of the Hutouya skarn lead-zinc polymetallic ore district in Qimatage area of Qinghai Province and its geological significance. J Jilin Univ (Earth Sci Ed) 41(6):1806–1818

    Google Scholar 

  22. Feng CY, Wang S, Li GC et al (2012) Middle to Late Triassic granitoids in the Qimantage area, Qinghai Province, China: chronology, geochemistry and metallogenic significances. Acta Petrol Sin 28(2):665–678

    Google Scholar 

  23. Foley SF, Tiepolo M, Vannucci R (2002) Growth of early continental crust controlled by melting of amphibolite in subduction zones. Nature 417(6891):837–840

    Article  Google Scholar 

  24. Frost CD, Frost BR (2011) On ferroan (A-type) granitoids: their compositional variability and modes of origin. J Petrol 39–53

    Article  Google Scholar 

  25. Frost BR, Barnes CG, Collins WJ et al (2001) A geochemical classification for granitic rocks. J Petrol 42(11):2033–2048

    Article  Google Scholar 

  26. Green TH (1995) Significance of Nb/Ta as an indicator of geochemical processes in the crust-mantle system. Chem Geol 120(3):347–359

    Article  Google Scholar 

  27. He SY, Li DS, Li LL et al (2009) Re-Os age of molybdenite from the Yazigou copper (molybdenum) mineralized area in eastern Kunlun of Qinghai Province, and its geological significance. Geotecton Metallog 33(2):236–242

    Google Scholar 

  28. Holloway JR, Ford CE (1975) Fluid-absent melting of the fluoro-hydroxy amphibole pargasite to 35 kilobars. Earth Planet Sci Lett 25(1):44–48

    Article  Google Scholar 

  29. Hou K, Li Y, Tian YY (2009) In situ U-Pb zircon dating using laser ablation-multi ion counting-ICP-MS. Mineral Depos 28(4):481–492

    Google Scholar 

  30. Hou KJ, Li YH, Zou TR et al (2007) Laser ablation-MC-ICP-MS technique for Hf isotope microanalysis of zircon and its geological applications. Acta Petrol Sin 23(10):2595–2604

    Google Scholar 

  31. Irvine T, Baragar W (1971) A guide to the chemical classification of the common volcanic rocks. Can J Earth Sci 8(5):523–548

    Article  Google Scholar 

  32. Johnson CM, Shirey SB, Barovich KM (1996) New approaches to crustal evolution studies and the origin of granitic rocks: what can the Lu–Hf and Re–Os isotope systems tell us? Geol Soc Am Spec Pap 315:339–352

    Google Scholar 

  33. Kamber BS, Ewart A, Collerson KD, Bruce MC, McDonald GD (2002) Fluid-mobile trace element constraints on the role of slab melting and implications for Archaean crustal growth models. Contrib Mineral Petr 144(1):38–56

    Article  Google Scholar 

  34. Keskin M (1994) Genesis of collision-related volcanism on the Erzurum-kars plateau, North eastern Turkey. Durham University, pp 1–363

    Google Scholar 

  35. Kouchi A, Sunagawa I (1983) Mixing basaltic and dacitic magmas by forced convection. Nature 304(5926):527–528

    Article  Google Scholar 

  36. Le Breton N, Thompson AB (1988) Fluid-absent (dehydration) melting of biotite in metapelites in the early stages of crustal anatexis. Contrib Mineral Petrol 99(2):226–237

    Article  Google Scholar 

  37. Li SJ, Sun FY, Feng CY et al (2008) Geochronological study on Yazigou polymetallic deposit in Eastern Kunlun, Qinghai Province. Acta Geol Sin 20(7):949–955

    Google Scholar 

  38. Liu YC, Ye ZF (1998) A new cognition on high grade-metamorphic rocks in Jinshuikou Area, Eastern Kunlun. Qinghai Geol 1:18–26

    Google Scholar 

  39. Liu YS, Hu ZC, Gao S et al (2008) In situ analysis of major and trace elements of anhydrous minerals by LA-ICP-MS without applying an internal standard. Chem Geol 257(1):34–43

    Article  Google Scholar 

  40. Liu JN, Feng CY, Zhao YM, Li DX, Xiao Y, Zhou JH, Ma YS (2013) Characteristics of intrusive rock, metasomatites, mineralization and alteration in Yemaquan skarn Fe-Zn polymetallic deposit, Qinghai Province. Miner Depos 1:008

    Google Scholar 

  41. Ludwig KR (2001) User’s manual for Isoplot/Ex v. 2.47. A geochronological toolkit for Microsoft Excel. BGC Special Publication 1a, Berkeley, 55 p

    Google Scholar 

  42. Ludwig KR (2003) User’s manual for Isoplot 3.00: a geochronological toolkit for Microsoft Excel. Berkeley Geochronological Center, Special Publication

    Google Scholar 

  43. Luo ZH, Ke S, Cao YQ et al (2002) Late Indosinian mantle-derived magmatism in the East Kunlun. Geol Bull China 21(6):292–297

    Google Scholar 

  44. Maniar PD, Piccoli PM (1989) Tectonic discrimination of granitoids. Geol Soc Am Bull 101(5):635–643

    Article  Google Scholar 

  45. McDonough WF, Sun S, Ringwood AE et al (1992) Potassium, rubidium, and cesium in the Earth and Moon and the evolution of the mantle of the Earth. Geochim Cosmochim Acta 56(3):1001–1012

    Article  Google Scholar 

  46. Nicholls IA, Harris KL (1980) Experimental rare earth element partition coefficients for garnet, clinopyroxene and amphibole coexisting with andesitic and basaltic liquids. Geochim Cosmochim Acta 44(2):287–308

    Article  Google Scholar 

  47. Patchett PJ, Tatsumoto M (1981) A routine high-precision method for Lu-Hf isotope geochemistry and chronology. Contributions to Mineralogy and Petrology 75(3):263–267

    Article  Google Scholar 

  48. Pfänder JA, Münker C, Stracke A, Mezger K (2007) Nb/Ta and Zr/Hf in ocean island basalts—implications for crust–mantle differentiation and the fate of Niobium. Earth Planet Sc Lett 254(1):158–172

    Article  Google Scholar 

  49. Rapp RP (1995) Amphibole-out phase boundary in partially melted metabasalt, its control over liquid fraction and composition, and source permeability. J Geophys Res: Solid Earth (1978–2012) 100(B8):15601–15610

    Article  Google Scholar 

  50. Rapp RP, Watson WB (1991) Partial melting of amphibolite/eclogite and the origin of tonalite-trondhjemitic magmas. Precambrian Res 51(1):1–25

    Article  Google Scholar 

  51. Rapp RP, Watson EB (1995) Dehydration melting of metabasalt at 8–32 kbar: implications for continental growth and crust-mantle recycling. J Petrol 36(4):891–931

    Article  Google Scholar 

  52. Rapp RP, Watson EB, Miller CF (1991) Partial melting of amphibolite/eclogite and the origin of Archean trondhjemites and tonalites. Precambrian Res 51(1):1–25

    Article  Google Scholar 

  53. Rudnick RL, Fountain DM (1995) Nature and composition of the continental crust: a lower crustal perspective. Rev Geophys 33(3):267–309

    Article  Google Scholar 

  54. Rudnick RL, Barth M, Horn I, McDonough WF (2000) Rutile-bearing refractory eclogites: missing link between continents and depleted mantle. Science 287(5451):278–281

    Article  Google Scholar 

  55. Rushmer T (1991) Partial melting of two amphibolites: contrasting experimental results under fluid-absent conditions. Contrib Mineral Petrol 107(1):41–59

    Article  Google Scholar 

  56. Scherer EE, Whitehouse MJ, Münker C (2007) Zircon as a monitor of crustal growth. Elements 3(1):19–24

    Article  Google Scholar 

  57. Skjerlie KP, Douce AEP, Johnston AD (1993) Fluid absent melting of a layered crustal protolith: implications for the generation of anatectic granites. Contrib Mineral Petrol 114(3):365–378

    Article  Google Scholar 

  58. Steiger RH, Jäger E (1977) Subcommission on geochronology: convention on the use of decay constants in geo-and cosmochronology. Earth Planet Sci Lett 36(3):359–362

    Article  Google Scholar 

  59. Sun SS, McDonough WF (1989) Chemical and isotopic systematics of oceanic basalts: implications for mantle composition and processes. Geol Soc Lond Spec Publ 42(1):313–345

    Article  Google Scholar 

  60. Taylor SR, Mclennan SM (1995) The geochemical evolution of the continental crust. Rev Geophysics 33(2):241–265

    Article  Google Scholar 

  61. Thompson AB (1982) Dehydration melting of pelitic rocks and the generation of H2O-undersaturated granitic liquids. Am J Sci 282(10):1567–1595

    Article  Google Scholar 

  62. Tian CS, Feng CY, Li JH et al (2013) 40Ar-39Ar geochronology of Tawenchahan Fe-polymetallic deposit in Qimantag Mountain of Qinghai Province and its geological implications. Miner Depos 32(1):169–176

    Google Scholar 

  63. Vervoort JD, Patchett JP (1996) Behavior of hafnium and neodymium isotopes in the crust: Constraints from Precambrian crustally derived granites. Geochim Cosmochim Acta 60(19):3717–3733

    Article  Google Scholar 

  64. Vervoort JD, Patchett PJ, Gehrels GE et al (1996) Constraints on early Earth differentiation from hafnium and neodymium isotopes. Nature 379:624–627

    Article  Google Scholar 

  65. Wang F, Zhu R, Yang L et al (2008) 40Ar/39Ar analyses on Quaternary K-Ar standard BB-24: evaluations. Int J Mass Spectrom 270(1):16–22

    Article  Google Scholar 

  66. Wang BZ, Luo ZH, Li HY et al (2009) Petrotectonic assemblages and temporal-spatial framework of the Late Paleozoic-Early Mesozoic intrusions in the Qimantage Corridor of the East Kunlun belt. Geol China 36(4):769–782

    Google Scholar 

  67. Wang FC, Chen J, Xie ZY et al (2013) Geological features and Re-Os isotopic dating of the Lalingzaohuomolybdenum polymetallic deposit in East Kunlun. Geol China 40(4):1209–1217

    Google Scholar 

  68. Wolf MB, Wyllie PJ (1994) Dehydration-melting of amphibolite at 10 kbar: the effects of temperature and time. Contrib Mineral Petrol 115(4):369–383

    Article  Google Scholar 

  69. Wu TX, Li HL (2009) Geological and Geochemical Characteristics of the Ironpolymetallic deposit in the Galinge area, Qinghai province. Bull Mineral Petrol Geochem 28(2):157–161

    Google Scholar 

  70. Wu F, Yang Y, Xie L et al (2006) Hf isotopic compositions of the standard zircons and baddeleyites used in U-Pb geochronology. Chem Geol 234(1):105–126

    Article  Google Scholar 

  71. Wu XX, Bao GY, Yi YC et al (2007) The study on the genesis and geological characteristics of Galinge high grade iron deposit of Qinghai province. Gold Sci Technol 15(4):36–40

    Google Scholar 

  72. Yu M, Feng CY, Zhao YM et al (2015) Genesis of post-collisional calc-alkaline and alkaline granitoids in Qiman Tagh, East Kunlun, China. Lithos 239:45–59

    Article  Google Scholar 

  73. Zhang JX, Meng FC, Wan YS et al (2003) Early Paleozoic tectono-thermal event of the Jinshuikou Group on the southern margin of Qaidam: Zircon U-Pb SHRIMP age evidence. Geol Bull China 22(6):397–404

    Google Scholar 

  74. Zhao SF, WU ZS, Zhang AK, Liu GL (2014) Geological Features, Deposit Genesis and Prospecting Potential of Changshan Molybdenum Deposit in Qimantage, Qinghai Province. Northwestern Geol 47(1):179–187

    Google Scholar 

  75. Zhou JH, Feng CY, Wang H et al (2014) Re-Os dating of molybdenite from the Yugouzi Fe-Cu (Mo) deposit in Qimantage, eastern Kunlun and its geological implications. Geol Explor 50(1):0001–0007

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Yu, M. (2019). Geochronological and Geochemical Constraints on the Galinge Skarn Deposit. In: Metallogenic Mechanism of the Galinge Polymetallic Iron Skarn Deposit, Qiman Tagh Mountains, Qinghai Province. Springer Theses. Springer, Singapore. https://doi.org/10.1007/978-981-10-7907-8_8

Download citation

Publish with us

Policies and ethics