Rheological Properties of Biological Structures, Scaffolds and Their Biomedical Applications

  • Sabra Rostami
  • Bora Garipcan


Rheology as the science of flow properties of materials is one of the most vital concepts that have greatly attracted the attention of biomedical engineers and bioengineers over the past few decades. It has been less than a century since the science of rheology was formally introduced to the scientific society. Over the past few decades rheological properties of living things including cells and tissues have been investigated and studied thoroughly. As a result various measurement techniques have been developed and used ever since such as Atomic Force Microscopy (AFM), optical measurement techniques, etc. Recent advancements of technology regarding submicron scale measurement enabled scientists to evaluate cellular behavior towards mechanical stimuli with ultra-precision. Data obtained from these studies have revealed vital information regarding effects of mechanical properties of cells on cellular functions such as adhesion, proliferation and migration, and differentiation. Additionally rheological properties of most tissues in human body were measured and some results have been configured into engineered scaffolds along with being used as diagnostic tools. Despite the fact that there are hundreds of studies regarding rheological properties of cells and tissues, there are still so many unsolved problems and unanswered questions concerning fabrication of ideal devices and implants that need to be solved and answered. Hence the hot topic of principles and influence of rheology on living materials has become an appealing and amusing research subject resulting in attainment of fascinating results, which so far have proven to be greatly helpful in unlocking wide range of unknowns of life itself. Of the uncountable number of researches conducted to this day regarding rheological properties of biomaterials a small portion of is discussed in this chapter as an introduction to the concept of rheology in living things and its significance.



The authors would like to thank Prof. Dr. Herbert J. Meiselman, Prof. Dr. Aysegül Temiz Artmann and Prof. Dr. Oguz K. Baskurt for their invaluable research in this field as the result of their lifetime of intelligence and hard work.


  1. 1.
    Alenghat, F. J., & Ingber, D. E. (2002). Mechanotransduction: All signals point to cytoskeleton, matrix, and integrins. Science’s STKE : Signal Transduction Knowledge Environment, 119, pe6.CrossRefGoogle Scholar
  2. 2.
    Amblard, F., Maggs, A. C., Yurke, B., Pargellis, A. N., & Leibler, S. (1996). Subdiffusion and anomalous local viscoelasticity in actin networks. Physical Review Letters, 77(21), 4470–4473. CrossRefGoogle Scholar
  3. 3.
    Artmann, G. M. (1995 Sep–Oct). Microscopic stiffness and relaxation time of red blood in a flow chamber of stiffness and relaxation time of red blood cells in a flow chamber. Biorheology, 32(5), 553–570.CrossRefGoogle Scholar
  4. 4.
    Artmann, G. M., Sung, K. L., Horn, T., Whittemore, D., Norwich, G., & Chien, S. (1997). Micropipette aspiration of human erythrocytes induces echinocytes via membrane phospholipid translocation. Biophysics Journal, 72, 1434.CrossRefGoogle Scholar
  5. 5.
    Ayala, Y. A., Pontes, B., Ether, D. S., Pires, L. B., Araujo, G. R., Frases, S., et al. (2016). Rheological properties of cells measured by optical tweezers. BMC Biophysics, 9, 5.Google Scholar
  6. 6.
    Badalà, Federico, Nouri-mahdavi, Kouros, & Raoof, Duna A. (2008). NIH public access. Computer, 144(5), 724–732.Google Scholar
  7. 7.
    Baskurt, Oguz K., & Meiselman, Herbert J. (2003). Blood rheology and hemodynamics. Seminars in Thrombosis and Hemostasis, 29(5), 435–450.CrossRefGoogle Scholar
  8. 8.
    Bausch, A. R., Ziemann, F., Boulbitch, A. A., Jacobson, K., & Sackmann, E. (1998). Local measurements of viscoelastic parameters of adherent cell surfaces by magnetic bead microrheometry. Biophysical Journal, 75(4), 2038–49. Scholar
  9. 9.
    Boudjema, F., Lounis, M., Khelidj, B., & Bessai, N. (2015). Rheological regional properties of brain tissue studied under cyclic creep/recovery shear stresses. Journal of Physics: Conference Series, 602(1), 6.Google Scholar
  10. 10.
    Budday, S., Nay, R., de Rooij, R., Steinmann, P., Wyrobek, T., Ovaert, T. C., & Kuhl, E. (2015). Mechanical properties of gray and white matter brain tissue by indentation. Journal of the Mechanical Behavior of Biomedical Materials, 46, 318–330. Scholar
  11. 11.
    Chan, C. J., Whyte, G., Boyde, L., Salbreux, G., & Guck, J. (2014). Impact of heating on passive and active biomechanics of suspended cells. Interface Focus, 4(2), 20130069. CrossRefGoogle Scholar
  12. 12.
    Cheng, S., Clarke, E. C., & Bilston, L. E. (2008). Rheological properties of the tissues of the central nervous system: A review. Medical Engineering & Physics, 30(10), 1318–1337.CrossRefGoogle Scholar
  13. 13.
    Chien, S. (2007). Mechanotransduction and endothelial cell homeostasis: The wisdom of the cell. American Journal of Physiology-Heart and Circulatory Physiology, 292(3), H1209–H1224. CrossRefGoogle Scholar
  14. 14.
    Chien, S., Sung, K. L., Skalak, R., Usami, S., Tözeren, A. (1978, November 24). Theoretical and experimental studies on viscoelastic properties of erythrocyte membrane. Biophysical Journal, 24, 463–487.CrossRefGoogle Scholar
  15. 15.
    Chmiel, B., Karkoszka, H., Cierpka, L., & Wiecek, A. (2005). Rheological properties of red blood cells in kidney transplant recipients: The role of lipid profile and type of immunosuppresion. Transplantation Proceedings, 37(4), 1885–1888.CrossRefGoogle Scholar
  16. 16.
    Crocker, J. C., & Hoffman, B. D. (2007). Multiple-particle tracking and two-point microrheology in cells. Methods in Cell Biology, 83(7), 141–178.CrossRefGoogle Scholar
  17. 17.
    Darling, E. M., Topel, M., Zauscher, S., Vail, T. P., & Guilak, F. (2008). Viscoelastic properties of human mesenchymally-derived stem cells and primary osteoblasts, chondrocytes, and adipocytes. Journal of Biomechanics, 41(2), 454–464.CrossRefGoogle Scholar
  18. 18.
    Di Terlizzi, R., & Platt, S. (2006). The function, composition and analysis of cerebrospinal fluid in companion animals: Part I—Function and composition. Veterinary Journal, 172(3), 422–431.Google Scholar
  19. 19.
    Doherty, G. J., & McMahon, H. T. (2008). Mediation, modulation, and consequences of membrane-cytoskeleton interactions. Annual Review of Biophysics, 37(1), 65–95.CrossRefGoogle Scholar
  20. 20.
    Driessen, N. J. B., Mol, A., Bouten, C. V. C., & Baaijens, F. P. T. (2007). Modeling the mechanics of tissue-engineered human heart valve leaflets. Journal of Biomechanics, 40(2), 325–334.CrossRefGoogle Scholar
  21. 21.
    Drury, J. L., & Dembo, M. (1999). Hydrodynamics of micropipette aspiration. Biophysical Journal, 76(1 Pt 1), 110–128.CrossRefGoogle Scholar
  22. 22.
    Engelking, L. R. (2011). Chemical composition of living cells. Textbook of veterinary physiological chemistry (pp. 2–6). Academic Press. eBook ISBN: 9780123919106.CrossRefGoogle Scholar
  23. 23.
    Farrar, D. F., & Rose, J. (2001). Rheological properties of PMMA bone cements during curing. Biomaterials, 22(22), 3005–3013.CrossRefGoogle Scholar
  24. 24.
    Franck, C., Maskarinec, S. A., Tirrell, D. A., & Ravichandran, G. (2011). Three-dimensional traction force microscopy: A new tool for quantifying cell-matrix interactions. PLoS ONE, 6(3).CrossRefGoogle Scholar
  25. 25.
    Goldmann, W. H. (2012). Mechanotransduction in cells. Cell Biology International, 36(6), 567–570.CrossRefGoogle Scholar
  26. 26.
    Guck, J., Ananthakrishnan, R., Mahmood, H., Moon, T. J., Cunningham, C. C., & Käs, J. (2001). The optical stretcher: A novel laser tool to micromanipulate cells. Biophysical Journal, 81(2), 767–784.CrossRefGoogle Scholar
  27. 27.
    Guilak, F., Tedrow, J. R., & Burgkart, R. (2000). Viscoelastic properties of the cell nucleus. Biochemical and Biophysical Research Communications, 269(3), 781–786.CrossRefGoogle Scholar
  28. 28.
    Haase, K., & Pelling, A. E. (2015). Investigating cell mechanics with atomic force microscopy. Journal of the Royal Society, Interface/the Royal Society, 12(104), 20140970.CrossRefGoogle Scholar
  29. 29.
    Hale, C. M., Sun, S. X., & Wirtz, D. (2009). Resolving the role of actoymyosin contractility in cell microrheology. PLoS ONE, 4(9).CrossRefGoogle Scholar
  30. 30.
    Han, M. K. L., & de Rooij, J. (2016). Converging and unique mechanisms of mechanotransduction at adhesion sites. Trends in Cell Biology, 26(8), 612–623. Scholar
  31. 31.
    Hasan, A., Memic, A., Annabi, N., Hossain, M., Paul, A., Dokmeci, M. R., et al. (2014). Electrospun scaffolds for tissue engineering of vascular grafts. Acta Biomaterialia, 10(1), 11–25.CrossRefGoogle Scholar
  32. 32.
    Hasan, A., Ragaert, K., Swieszkowski, W., Selimović, Š., Paul, A., Camci-Unal, G., et al. (2014). Biomechanical properties of native and tissue engineered heart valve constructs. Journal of Biomechanics, 47(9), 1949–1963.CrossRefGoogle Scholar
  33. 33.
    Hochmuth, R. M. (2000). Micropipette aspiration of living cells. Journal of Biomechanics, 33(1), 15–22.MathSciNetCrossRefGoogle Scholar
  34. 34.
    Hoffman, B. D., & Crocker, J. C. (2009). Cell mechanics: Dissecting the physical responses of cells to force. Annual Review of Biomedical Engineering, 11, 259–288.CrossRefGoogle Scholar
  35. 35.
    Humphrey, J. D., Dufresne, E. R., & Schwartz, M. A. (2014). Mechanotransduction and extracellular matrix homeostasis. Nature Reviews Molecular Cell Biology, 15(12), 802–812. Scholar
  36. 36.
    Icard-Arcizet, Delphine, Cardoso, Olivier, Richert, Alain, & Hénon, Sylvie. (2008). Cell stiffening in response to external stress is correlated to actin recruitment. Biophysical Journal, 94(7), 2906–2913.CrossRefGoogle Scholar
  37. 37.
    Irace, C., Carallo, C., Scavelli, F., Esposito, T., De Franceschi, M. S., Tripolino, C., & Gnasso, A. (2014). Influence of blood lipids on plasma and blood viscosity. Clinical Hemorheology and Microcirculation, 57(3), 283–290.Google Scholar
  38. 38.
    Jay, A. W., & Canham, P. B. (1977). Viscoelastic properties of the human red blood cell membrane. II. Area and volume of individual red cells entering a micropipette. Biophysical Journal, 17(2), 169–178. Scholar
  39. 39.
    Kalejs, M., Stradins, P., Lacis, R., Ozolanta, I., Pavars, J., & Kasyanov, V. (2009). St Jude Epic Heart Valve bioprostheses versus native human and porcine aortic valves—Comparison of mechanical properties. Interactive Cardiovascular and Thoracic Surgery, 8(5), 553–556.CrossRefGoogle Scholar
  40. 40.
    Kofahl, A. L., Theilenberg, S., Bindl, J., Ulucay, D., Wild, J., Napiletzki, S., et al. (2016). Combining rheology and MRI: Imaging healthy and tumorous brains based on mechanical properties. Magnetic Resonance in Medicine, 0, 1–11.Google Scholar
  41. 41.
    Kollmannsberger, P., & Fabry, B. (2007). High-force magnetic tweezers with force feedback for biological applications. Review of Scientific Instruments, 78(11), 1–6.CrossRefGoogle Scholar
  42. 42.
    Kraning-Rush, C. M., Califano, J. P., & Reinhart-King, C. A. (2012). Cellular traction stresses increase with increasing metastatic potential. PLoS ONE, 7(2).CrossRefGoogle Scholar
  43. 43.
    Laperrousaz, B., Drillon, G., Berguiga, L., Nicolini, F., Audit, B., Satta, V. M., et al. (2016). From elasticity to inelasticity in cancer cell mechanics: A loss of scale-invariance. AIP Conference Proceedings (p. 1760).Google Scholar
  44. 44.
    Last, J. A., Liliensiek, S. J., Nealey, P. F., & Murphy, C. J. (2009). Determining the mechanical properties of human corneal basement membranes with atomic force microscopy. Journal of Structural Biology, 167(1), 19–24.CrossRefGoogle Scholar
  45. 45.
    Lomakina, E. B., Spillmann, C. M., King, M. R., & Waugh, R. E. (2004). Rheological analysis and measurement of neutrophil indentation. Biophysical Journal, 87(6), 4246–4258.CrossRefGoogle Scholar
  46. 46.
    Lombardo, M., Lombardo, G., Carbone, G., De Santo, M. P., Barberi, R., & Serrao, S. (2012). Biomechanics of the anterior human corneal tissue investigated with atomic force microscopy. Investigative Ophthalmology and Visual Science, 53(2), 1050–1057.CrossRefGoogle Scholar
  47. 47.
    Lu, Y.-B., Franze, K., Seifert, G., Steinhäuser, C., Kirchhoff, F., Wolburg, H., et al. (2006). Viscoelastic properties of individual glial cells and neurons in the CNS. Proceedings of the National Academy of Sciences, 103(47), 17759–17764.CrossRefGoogle Scholar
  48. 48.
    Lulevich, V., Zink, T., Chen, H. Y., Liu, F. T., & Liu, G. Y. (2006). Cell mechanics using atomic force microscopy-based single-cell compression. Langmuir, 22(19), 8151–8155.CrossRefGoogle Scholar
  49. 49.
    Massiera, G., Van Citters, K. M., Biancaniello, P. L., & Crocker, J. C. (2007). Mechanics of single cells: Rheology, time dependence, and fluctuations. Biophysical Journal, 93(10), 3703–3713. Scholar
  50. 50.
    Matthews, B. D., Overby, D. R., Mannix, R., & Ingber, D. E. (2006). Cellular adaptation to mechanical stress: Role of integrins, rho, cytoskeletal tension and mechanosensitive ion channels. Journal of Cell Science, 119(Pt 3), 508–518.CrossRefGoogle Scholar
  51. 51.
    Moeendarbary, E., & Harris, A. R. (2014). Cell mechanics: Principles, practices, and prospects. Wiley Interdisciplinary Reviews: Systems Biology and Medicine, 6(5), 371–388.Google Scholar
  52. 52.
    Morra, M., Giavaresi, G., Sartori, M., Ferrari, A., Parrilli, A., Bollati, D., et al. (2015). Surface chemistry and effects on bone regeneration of a novel biomimetic synthetic bone filler. Journal of Materials Science: Materials in Medicine, 26(4).
  53. 53.
    Munevar, S. (2004). Regulation of mechanical interactions between fibroblasts and the substratum by stretch-activated Ca2+ entry. Journal of Cell Science, 117(1), 85–92.CrossRefGoogle Scholar
  54. 54.
    Müller, U. (2004). Integrins and extracellular matrix in animal models. Handbook of Experimental Pharmacology, 165, 217–241.CrossRefGoogle Scholar
  55. 55.
    Nagayama, K., Adachi, A., & Matsumoto, T. (2011). Heterogeneous response of traction force at focal adhesions of vascular smooth muscle cells subjected to macroscopic stretch on a micropillar substrate. Journal of Biomechanics, 44(15), 2699–2705.CrossRefGoogle Scholar
  56. 56.
    Nawaz, S., Sánchez, P., Bodensiek, K., Li, S., Simons, M., & Schaap, I. A. (2012). Cell visco-elasticity measured with AFM and optical trapping at sub-micrometer deformations. PLoS ONE, 7(9).CrossRefGoogle Scholar
  57. 57.
    Oh, M.-J., Kuhr, F., Byfield, F., & Levitan, I. (2012). Micropipette aspiration of substrate-attached cells to estimate cell stiffness. Journal of Visualized Experiments, 67, e3886.Google Scholar
  58. 58.
    Pajerowski, J. D., Dahl, K. N., Zhong, F. L., Sammak, P. J., & Discher, D. E. (2007). Physical plasticity of the nucleus in stem cell differentiation. Proceedings of the National Academy of Sciences of the United States of America, 104(40), 15619–15624.CrossRefGoogle Scholar
  59. 59.
    Park, Y., Best, C. A., Badizadegan, K., Dasari, R. R., Feld, M. S., Kuriabova, T., et al. (2010). Measurement of red blood cell mechanics during morphological changes. Proceedings of the National Academy of Sciences of the United States of America, 107(15), 6731–6736.CrossRefGoogle Scholar
  60. 60.
    Pierini, F., Zembrzycki, K., Nakielski, P., Pawłowska, S., & Kowalewski, T. A. (2016). Atomic force microscopy combined with optical tweezers (AFM/OT). Measurement Science and Technology, 27(2), 25904.CrossRefGoogle Scholar
  61. 61.
    Pryor, L. S., Gage, E., Langevin, C. J., Herrera, F., Breithaupt, A. D., Gordon, C. R., et al. (2009). Review of bone substitutes. Craniomaxillofacial Trauma & Reconstruction, 2(3), 151–160.CrossRefGoogle Scholar
  62. 62.
    Pullarkat, P. A., Fernández, P. A., & Ott, Albrecht. (2007). Rheological properties of the eukaryotic cell cytoskeleton. Physics Reports, 449(1–3), 29–53.CrossRefGoogle Scholar
  63. 63.
    Quinto-Su, P. A., Kuss, C., Preiser, P. R., & Ohl, C.-D. (2011). Red blood cell rheology using single controlled laser-induced cavitation bubbles. Lab on a Chip, 11(4), 672–678.CrossRefGoogle Scholar
  64. 64.
    Raucher, D., Stauffer, T., Chen, W., Shen, K., Guo, S., York, J. D., et al. (2000). Phosphatidylinositol 4,5-Bisphosphate functions as a second messenger that regulates cytoskeleton–plasma membrane adhesion. Cell, 100(2), 221–228.CrossRefGoogle Scholar
  65. 65.
    Riveline, D., Zamir, E., Balaban, N. Q., Schwarz, U. S., Ishizaki, T., Narumiya, S., et al. (2001). Focal contacts as mechanosensors. The Journal of Cell Biology, 153(6), 1175–1186.CrossRefGoogle Scholar
  66. 66.
    Roohani-Esfahani, S.-I., Newman, P., & Zreiqat, H. (2016). Design and fabrication of 3D printed scaffolds with a mechanical strength comparable to cortical bone to repair large bone defects. Scientific Reports, 6(February 2015), 19468.Google Scholar
  67. 67.
    Rother, J., Nöding, H., Mey, I., & Janshoff, A. (2014). Atomic force microscopy-based microrheology reveals significant differences in the viscoelastic response between malign and benign cell lines. Open Biology, 4(5), 140046.CrossRefGoogle Scholar
  68. 68.
    Sasaki, N. (2012). Viscoelastic properties of biological materials. Annals of the New York Academy of Sciences, 99–122.
  69. 69.
    Schulze, C., Wetzel, F., Kueper, T., Malsen, A., Muhr, G., Jaspers, S., et al. (2012). Stiffening of human skin fibroblasts with age. Clinics in Plastic Surgery, 39(1), 9–20.CrossRefGoogle Scholar
  70. 70.
    Shuck, L. Z., & Advani, S. H. (1972). Rheological response of human brain tissue in shear. Journal of Basic Engineering Trans ASME, 94 Ser D(4), 905–911.CrossRefGoogle Scholar
  71. 71.
    Sleep, J., Wilson, D., Simmons, R., & Gratzer, W. (1999). Elasticity of the red cell membrane and its relation to hemolytic disorders: An optical tweezers study. Biophysical Journal, 77(6), 3085–3095.CrossRefGoogle Scholar
  72. 72.
    Stamenović, D. (2008). Rheological behavior of mammalian cells. Cellular and Molecular Life Sciences, 65(22), 3592–3605.CrossRefGoogle Scholar
  73. 73.
    Supriya, B., Jun, D., Paul, B. C., & Dahms, T. E. S. (2012). Viscoelasticity in biological systems: A special focus on microbes. ISBN 978-953-51-0841-2, Publisher: InTech.Google Scholar
  74. 74.
    Thoumine, O., & Ott, A. (1997). Time scale dependent viscoelastic and contractile regimes in fibroblasts probed by microplate manipulation. Journal of Cell Science, 110(Pt 1), 2109–2116.Google Scholar
  75. 75.
    Tozeren, A., Skalak, R., Sung, K. P., & Chien, S. H. U. (1982). Viscoelastic behavior of erythrocyte membrane. Biophysical Society, 39(1), 23–32.CrossRefGoogle Scholar
  76. 76.
    Trepat, X., Grabulosa, M., Puig, F., Maksym, G. N., Navajas, D., & Farré, R. (2004). Viscoelasticity of human alveolar epithelial cells subjected to stretch. American Journal of Physiology, 287(5), L1025–L1034.CrossRefGoogle Scholar
  77. 77.
    Tseng, Y., Kole, T. P., & Wirtz, D. (2002). Micromechanical mapping of live cells by multiple-particle-tracking microrheology. Biophysical Journal, 83(6), 3162–3176.CrossRefGoogle Scholar
  78. 78.
    Van Citters, K. M., Hoffman, B. D., Massiera, G., & Crocker, J. C. (2006). The role of F-actin and myosin in epithelial cell rheology. Biophysical Journal, 91(10), 3946–3956.CrossRefGoogle Scholar
  79. 79.
    Verdier, C., Etienne, J., Duperray, A., Preziosi, L., et al. (2009). Review: Rheological properties of biological materials. Comptes Rendus Physique, 10(8), 790–811. Scholar
  80. 80.
    Von Wichert, G., Jiang, G., Kostic, A., De Vos, K., Sap, J., & Sheetz, M. P. (2003). RPTP-α acts as a transducer of mechanical force on αv/β3-integrin–cytoskeleton linkages. The Journal of Cell Biology, 161(1), 143–153. Scholar
  81. 81.
    Vonna, Laurent, Wiedemann, Agnès, Aepfelbacher, Martin, & Sackmann, Erich. (2003). Local Force Induced Conical Protrusions of Phagocytic Cells. Journal of Cell Science, 116(Pt 5), 785–790.CrossRefGoogle Scholar
  82. 82.
    Walters, K. (1980). History of rheology. Rheology I.CrossRefGoogle Scholar
  83. 83.
    Wang, N., Tolic-Nørrelykke, I. M., Chen, J., Mijailovich, S. M., Butler, J. P., Fredberg, J. J., & Stamenovic, D. (2002). Cell prestress. I. Stiffness and prestress are closely associated in adherent contractile cells. American Journal of Physiology. Cell Physiology, 282(3), C606–C616.CrossRefGoogle Scholar
  84. 84.
    Zhou, S., Sokolov, A., Lavrentovich, O. D., & Aranson, I. S. (2014). Living liquid crystals. Proceedings of the National Academy of Sciences of the United States of America, 111(4), 1265–1270. Scholar

Copyright information

© Springer Nature Singapore Pte Ltd. 2018

Authors and Affiliations

  1. 1.Bio3 Research Laboratory, Institute of Biomedical EngineeringBogazici UniversityIstanbulTurkey

Personalised recommendations