A Collagen-Hyaluronic Acid Matrix for Stem Cell Culture

  • Euisung Chung
  • Geajin Yoon
  • Hwal (Matthew) Suh


Recently, the regenerative medicine has been introduced to promote self-restoration, replacement and regeneration of impaired bodily function of tissues or organs by delivering viable cells which are genetically appropriate to patients. In this study, porous matrices of nano fibrous collagen-HA were produced, and their affinity to human bone marrow derived mesenchymal stem cells (hBM-MSCs), human embryonic stem cells (hESC) and human induced pluripotnent stem cells (hiPSC) were evaluated through observing expression of specific proteins, DNA or RNA, to investigate possibilities of using the matrix in regenerative medicine.


  1. 1.
    Suh, H., Chung, E., & Jae Hyung, K. (2013). Global safety guidance for the cell-based implants. Tissue Science & Engineering, 4.Google Scholar
  2. 2.
    Suh, H. (1998). Fundamental concepts for the tissue engineering. Biomaterials Research, 2, 1–7.Google Scholar
  3. 3.
    Langer, R., & Vacanti, J. P. (1993). Tissue engineering. Science, 260, 920–926.CrossRefGoogle Scholar
  4. 4.
    Langer, R., & Tirrell, D. A. (2004). Designing materials for biology and medicine. Nature, 428, 487–492.CrossRefGoogle Scholar
  5. 5.
    Murphy, S. V., & Atala, A. (2013). Organ engineering—combining stem cells, biomaterials, and bioreactors to produce bioengineered organs for transplantation. BioEssays, 35, 163–172.CrossRefGoogle Scholar
  6. 6.
    Naderi, H., Matin, M. M., Bahrami, A. R. (2011). Review article: Critical issues in tissue engineering: Biomaterials, cell sources, angiogenesis, and drug delivery systems. Journal of Biomaterials Applications.
  7. 7.
    Matthews, J. A., Wnek, G. E., Simpson, D. G., & Bowlin, G. L. (2002). Electrospinning of collagen nanofibers. Biomacromolecules, 3, 232–238.CrossRefGoogle Scholar
  8. 8.
    Hsu, F. Y., Hung, Y. S., Liou, H. M., & Shen, C. H. (2010). Electrospun hyaluronate-collagen nanofibrous matrix and the effects of varying the concentration of hyaluronate on the characteristics of foreskin fibroblast cells. Acta Biomaterialia, 6, 2140–2147.CrossRefGoogle Scholar
  9. 9.
    Sell, S. A., Wolfe, P. S., Garg, K., McCool, J. M., Rodriguez, I. A., & Bowlin, G. L. (2010). The use of natural polymers in tissue engineering: A focus on electrospun extracellular matrix analogues. Polymers, 2, 522.CrossRefGoogle Scholar
  10. 10.
    Suh, H., & Lee, J. E. (2002). Behavior of fibroblasts on a porous hyaluronic acid incorporated collagen matrix. Yonsei Medical Journal, 43, 193–202.CrossRefGoogle Scholar
  11. 11.
    Park, S. N., Lee, H. J., Lee, K. H., & Suh, H. (2003). Biological characterization of EDC-crosslinked collagen- hyaluronic acid matrix in dermal tissue restoration. Biomaterials, 24, 1631–1641.CrossRefGoogle Scholar
  12. 12.
    Park, S. N., Park, J. C., Kim, H. O., Song, M. J., & Suh, H. (2002). Characterization of porous collagen/hyaluronic acid scaffold modified by 1-ethyl-3-(3-dimethylaminopropyl)carbodiimide cross-linking. Biomaterials, 23, 1205–1212.CrossRefGoogle Scholar
  13. 13.
    Lee, J. M., Edwards, H. H. L., Pereira, C. A., Samii, S. I. Crosslinking of tissue-derived biomaterials in 1-ethyl-3-(3-dimethylaminopropyl)-carbodiimide (EDC). Journal of Materials Science: Materials in Medicine, 7, 531–541.Google Scholar
  14. 14.
    Fischer, R. L., McCoy, M. G., & Grant, S. A. (2012). Electrospinning collagen and hyaluronic acid nanofiber meshes. Journal of Materials Science Materials in Medicine, 23, 1645–1654.CrossRefGoogle Scholar
  15. 15.
    Kim, T. G., Chung, H. J., & Park, T. G. (2008). Macroporous and nanofibrous hyaluronic acid/collagen hybrid scaffold fabricated by concurrent electrospinning and deposition/leaching of salt particles. Acta Biomaterialia, 4, 1611–1619.CrossRefGoogle Scholar
  16. 16.
    Glowacki, J., & Mizuno, S. (2008). Collagen scaffolds for tissue engineering. Biopolymers, 89, 338–344.CrossRefGoogle Scholar
  17. 17.
    Parenteau-Bareil, R., Gauvin, R., & Berthod, F. (2010). Collagen-based biomaterials for tissue engineering applications. Materials, 3, 1863.CrossRefGoogle Scholar
  18. 18.
    Furthmayr, H., & Timpl, R. (1976). Immunochemistry of collagens and procollagens. International Review Connective Tissue Research, 7, 61–99.CrossRefGoogle Scholar
  19. 19.
    Her, G. J., Wu, H. C., Chen, M. H., Chen, M. Y., Chang, S. C., & Wang, T. W. (2013). Control of three-dimensional substrate stiffness to manipulate mesenchymal stem cell fate toward neuronal or glial lineages. Acta Biomaterialia, 9, 5170–5180.CrossRefGoogle Scholar
  20. 20.
    Murphy, C. M., Matsiko, A., Haugh, M. G., Gleeson, J. P., & O’Brien, F. J. (2012). Mesenchymal stem cell fate is regulated by the composition and mechanical properties of collagen-glycosaminoglycan scaffolds. Journal of the Mechanical Behavior of Biomedical Materials, 11, 53–62.CrossRefGoogle Scholar
  21. 21.
    Hortensius, R. A., & Harley, B. A. (2013). The use of bioinspired alterations in the glycosaminoglycan content of collagen-GAG scaffolds to regulate cell activity. Biomaterials, 34, 7645–7652.CrossRefGoogle Scholar
  22. 22.
    Knudson, C. B. (2003). Hyaluronan and CD44: Strategic players for cell-matrix interactions during chondrogenesis and matrix assembly. Birth Defects Res C Embryo Today, 69, 174–196.CrossRefGoogle Scholar
  23. 23.
    Wang, X., Ding, B., & Li, B. (2013). Biomimetic electrospun nanofibrous structures for tissue engineering. Materials Today, 16, 229–241.CrossRefGoogle Scholar
  24. 24.
    Gupta, K. C., Haider, A., Y, Choi, & I, Kang. (2014). Nanofibrous scaffolds in biomedical applications. Biomaterials Research, 18, 1–11.CrossRefGoogle Scholar
  25. 25.
    Lu, T., Li, Y., & Chen, T. (2013). Techniques for fabrication and construction of three-dimensional scaffolds for tissue engineering. International Journal of Nanomedicine, 8, 337–350.CrossRefGoogle Scholar
  26. 26.
    Shih, Y. R. V., Chen, C. N., Tsai, S. W., Wang, Y. J., & Lee, O. K. (2006). Growth of mesenchymal stem cells on electrospun type I collagen nanofibers. Stem Cells, 24, 2391–2397.CrossRefGoogle Scholar
  27. 27.
    Park, S. N., Kim, J. H., Kim, I., Seol, A., & Suh, H. (2006). Electrospun nanofibrous matrices for the engineering of cultured skin substitute. Biomaterials Research, 10, 7.Google Scholar
  28. 28.
    Dong, B., Arnoult, O., Smith, M. E., & Wnek, G. E. (2009). Electrospinning of collagen nanofiber scaffolds from benign solvents. Macromolecular Rapid Communications, 30, 539–542.CrossRefGoogle Scholar
  29. 29.
    Suh, H., Suh, S., & Min, B. (1994). Anti-infection treatment of a transcutaneous device by a collagen- rifampicine composite. ASAIO Journal, 40, M406–M411.CrossRefGoogle Scholar
  30. 30.
    Wang, X., Um, I. C., Fang, D., Okamoto, A., Hsiao, B. S., & Chu, B. (2005). Formation of water-resistant hyaluronic acid nanofibers by blowing-assisted electro-spinning and non-toxic post treatments. Polymer, 46, 4853–4867.CrossRefGoogle Scholar
  31. 31.
    Bhardwaj, N., & Kundu, S. C. (2010). Electrospinning: A fascinating fiber fabrication technique. Biotechnology Advances, 28, 325–347.CrossRefGoogle Scholar
  32. 32.
    Barnes, C. P., Sell, S. A., Boland, E. D., Simpson, D. G., & Bowlin, G. L. (2007). Nanofiber technology: Designing the next generation of tissue engineering scaffolds. Advanced Drug Delivery Reviews, 59, 1413–1433.CrossRefGoogle Scholar

Copyright information

© Springer Nature Singapore Pte Ltd. 2018

Authors and Affiliations

  • Euisung Chung
    • 1
  • Geajin Yoon
    • 1
  • Hwal (Matthew) Suh
    • 1
    • 2
  1. 1.Graduate Program for Nano Science and Technology, The Graduate SchoolYonsei UniversitySeoulKorea
  2. 2.Department of Medical EngineeringYonsei University College of MedicineSeoulKorea

Personalised recommendations